
Master’s Thesis
(Course Code: XM_0011)

A Comparative Implementation Study of MLOps Tools
Through an Industrial Anomaly Detection Pipeline

by

Zakkarija Micallef
(Student Number: 2815221)

Submitted in partial fulfillment of the requirements
for the joint UvA-VU degree of

Master of Science
in

Computer Science
at the

Vrije Universiteit Amsterdam

January 3, 2026

Certified by .
Dr. Ilias Gerostathopoulos

Assistant Professor
First Supervisor

Certified by .
Keerthiga Rajenthiram

Ph.D. Researcher
Daily Supervisor

Certified by .
Dr. Justus Bogner

Assistant Professor
Second Reader

The research work disclosed in this publication is partially funded by the Endeavour II Scholarships

Scheme. The project is co-funded by the ESF+ 2021-2027

A Comparative Implementation Study of MLOps Tools Through
an Industrial Anomaly Detection Pipeline

Zakkarija Micallef
Vrije Universiteit Amsterdam

Amsterdam, NL
z.micallef@student.vu.nl

Abstract
Machine learning operations has become increasingly critical as
more organisations deploy machine learning models into produc-
tion. However, the growing landscape of MLOps solutions has
introduced complexity for practitioners trying to select appropriate
tools. This thesis evaluates the most popular MLOps tools identified
in our prior systematic literature review, organizing them into two
representative pipelines centered around MLflow and Kubeflow to
test realistic integration scenarios. Using a real industrial anomaly
detection pipeline from IDEKO, we implemented both configura-
tions and assessed individual tools across four dimensions: usability,
functionality, flexibility, and vitality. The evaluation revealed fun-
damental differences in complexity and required expertise. Tools in
the MLflow-centered pipeline provided straightforward workflows
with minimal setup, enabling teams to start quickly and scale gradu-
ally. In contrast, tools in the Kubeflow-centered pipeline demanded
substantial Kubernetes knowledge and operational expertise for
even basic tasks. Beyond individual tool assessment, our implemen-
tation revealed integration challenges such as documentation frag-
mentation and hidden complexity. These practical insights could
only be discovered through hands-on implementation, providing
teams with realistic expectations about the operational overhead
and expertise required for different MLOps tools and their integra-
tion patterns.

1 Introduction
Machine learning (ML) is becoming increasingly used across all
sectors of industry and society. Organizations integrate ML mod-
els into production systems for tasks ranging from manufacturing
anomaly detection to healthcare diagnostics, creating a growing
need for accessible deployment and operational tools. However,
many AI engineers and data scientists lack the software deployment
expertise of operations teams, especially when it comes to MLOps
tools [1]. The MLOps tool landscape is confusing since there is sig-
nificant fragmentation with hundreds of tools, many of which lack
maturity. Teams face issues such as tool variety, choice complex-
ity, rapid development causing breaking changes, and integration
problems between different vendors’ tools [1]. New tools appear
constantly while existing ones evolve rapidly, making it difficult
for practitioners to keep up.

This thesis is largely a follow-up to a Systematic Literature Re-
view (SLR) we previously conducted [2]. In order to understand the
Machine learning operations (MLOps) landscape, the SLR exam-
ined 41 papers, noting the most popular tools, what parts of the ML
lifecycle they address, and what experiences publications reported.
Our thesis builds upon those findings by deploying and comparing

the most popular tools first-hand to understand their practical use
and integration with other tools.

We implement an industrial anomaly detection pipeline on the
most popular MLOps tools identified in our SLR. The use case
provided by IDEKO, a research center specializing in manufac-
turing technology [3]. It addresses a real problem involving high-
frequency sensor data from precision grinding machines, where de-
tecting early signs of wear can prevent costly failures. This ground-
ing in a practical industrial case ensures that the evaluation reflects
real constraints rather than idealized scenarios. The evaluation goes
beyond verifying whether tools function. It examines the entire
experience, from installation and setup to the required knowledge,
debugging process, and ease of integration.

The thesis is structured as follows: Section 2 provides an in-
depth background on Development and Operations (DevOps) and
MLOps, and summarizes findings from the SLR. Section 3 details
the research design, including the case study methodology and eval-
uation framework. Section 4 presents results from both individual
tool comparisons and full stack evaluation. Section 5 discusses the
implications and trade-offs discovered. Section 6 outlines threats
to validity. Section 7 covers related work, and Section 8 concludes
with practical recommendations for teams choosing between these
platforms.

2 Background
This section establishes the foundational concepts of MLOps, and
summarizes key findings from our SLR that motivated this thesis.

2.1 DevOps
Traditionally, an operations team is in charge of tasks such as
deployment and ongoing monitoring. To reduce software time-to-
value and create stronger collaboration between development and
operations, software companies frequently use DevOps. DevOps
is described as a culture that emphasises continuous collaboration
throughout the software lifecycle. It involves practices such as
continuous integration (CI), which entails frequent code merges,
and continuous deployment (CD), which automates the release
process to ensure software remains deployable [4].

2.2 MLOps
ML systems combine code with data, making them harder to main-
tain than traditional software [5]. The main challenge is that soft-
ware developers, data scientists, and domain specialists must work
together despite using different tools and development cycles.MLOps
addresses this integration problem by combining ML, DevOps, and
Data Engineering practices to help these teams collaborate when
deploying ML systems [6]. MLOps refers to the entire lifecycle of

1

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

Figure 1: Most mentioned tools according to our SLR [2]

the machine-learning process, bridging the gap between data, devel-
opment, and operations. MLOps extends beyond applying DevOps
principles to ML. It involves CI/CD, automation for ML pipelines,
orchestration of ML workflows, versioning of data, models, and
code to ensure reproducibility, continuous training to keep mod-
els up to date, metadata tracking for experiment auditability, and
continuous evaluation and performance monitoring [6].

2.3 Systematic Literature Review
Despite the growing interest in MLOps, existing reviews often
remain high-level focusing primarily on listing tools, comparing
surface-level features, or distinguishing between open-source and
proprietary solutions. However, there is limited synthesis of how
these tools are actually used in practice. Most studies fail to capture
the practical experiences of teams deploying real-world ML sys-
tems. This gap in the literature limits the ability of researchers and
practitioners to make informed choices based on implementation
outcomes rather than tool specifications alone.

To understand the current MLOps tool landscape, we conducted
an SLR of academic papers focused onMLOps tools [2]. A structured
search on Google Scholar followed by manual screening reduced
96 papers to 41 primary studies. The analysis revealed clear adop-
tion trends: MLflow was the most frequently mentioned tool (16
papers), followed by DVC and Kubeflow Pipelines (10 papers each),
and Amazon SageMaker (8 papers). Their popularity can be linked
to their ability to address specific pain points. MLflow simplifies
experiment tracking, DVC offers Git-style version control for large
datasets, Kubeflow provides cloud-agnostic workflow management,
and SageMaker delivers a fully managed environment.

The review also found that MLOps pipelines often share the
same eight stages: data ingestion and versioning, feature engineer-
ing and storage, workflow orchestration, experiment tracking and
hyperparameter optimization (HPO), model registry, CI/CD and
packaging, model serving, and performance monitoring. No single
tool supports the entire lifecycle, so practitioners typically combine
specialised tools to cover all stages. This makes integration a criti-
cal factor when designing MLOps stacks. Accordingly, this thesis
compares complete tool stacks on top of the individual tools.

3 Design
This section details our research methodology, including the case
study approach, the IDEKO industrial use case, tool selection ratio-
nale, and the evaluation framework used to assess both individual
tools and complete stacks.

3.1 Research Questions
RQ1: How do the most popular MLOps tools compare across
usability, functionality, flexibility, and vitality dimensions
when applied to an industrial anomaly detection pipeline?

We assess the most popular MLOps tools according to our SLR [2],
comparing functionally equivalent alternatives: DVC vs LakeFS for
data versioning, Airflow vs Kubeflow Pipelines for orchestration,
MLflow Tracking vs MLMetadata (MLMD) for experiment tracking,
Optuna vs Katib for HPO, and MLflow Serving vs KServe for model
serving. Feast serves as the feature store for both stacks.

Each tool is exercised inside the IDEKOworkflow. The evaluation
captures individual capabilities and integration characteristics, such
as how tools pass data, trigger subsequent steps, and share metadata
with other components. We apply a consistent rubric across four
quality dimensions: usability, functionality, flexibility, and vitality.
This approach reveals both the standalone merits of each tool and
the friction that emerges when integrated with others. The goal is
to provide engineers with practical insights about real-world tool
behaviour.

RQ2: How do MLflow-centric and Kubeflow-centric stacks
compare as end-to-end MLOps solutions for an industrial
anomaly detection pipeline?

This question shifts focus from individual tools to complete MLOps
stacks. According to our SLR, MLflow and Kubeflow emerge as
the two most widely adopted MLOps ecosystems, though they
represent fundamentally different architectural approaches [2]. We
implement the full IDEKO anomaly detection pipeline in both stacks
to understand how their architectural choices affect the workflow.
Both stacks handle identical tasks: data versioning, orchestration,
experiment tracking, hyperparameter tuning, and model serving.

TheMLflow-centric stack represents a collection of best-of-breed
tools (MLflow for tracking, DVC for versioning, Airflow for orches-
tration, Optuna for HPO) integrated together to form a pipeline,
testing how these popular tools behave when combined. In contrast,
Kubeflow provides a cohesive platform with Kubernetes-native or-
chestration for containerized workflows, where components are
designed from the outset to work together as an integrated system.

We examine individual tool performance alongside stack-level
characteristics, including setup complexity, integration effort and
debugging experience. The same rubric is applied to both the com-
ponent and stack levels to compare an MLflow-centric stack as-
sembled from popular standalone tools with Kubeflow’s integrated
platform.

3.2 Research Methodology: IDEKO Case Study
In order to compare our MLOps tool stacks, a realistic test bed was
required. Our research adopts a case study methodology since it
is particularly suitable in software engineering and ML research

2

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Table 1: Comprehensive Tool Selection for MLflow and Kubeflow Stacks

Component MLflow Kubeflow Description Rationale
Data
Versioning

DVC LakeFS DVC: Git-like workflow to version large datasets and models alongside
code [7–9].
LakeFS: Git-like version control for object storage. S3-compatible and
Kubernetes-native architecture suits containerized workflows [10].

DVC: Most popular tool overall [2].
LakeFS: Kubernetes-native architecture suits Kubeflow
stack. [10].

Feature Store Feast Feast Provides offline and online feature storage, keeping historical and live
data in sync [11, 12].

Most widespread feature store in the SLR [2].

Orchestration Airflow KF Pipelines Airflow: Open-source platform for orchestrating production workflows
and data pipelines [13].
KF Pipelines: Orchestrates containerized workloads with parallel exe-
cution on Kubernetes [14] [15].

Airflow: Mature, widely adopted. Second most popular
orchestrator in SLR [2].
KF Pipelines:Most popular orchestrator in SLR [2] and
is the core Kubeflow platform tool.

HPO Optuna Katib Optuna: Python HPO framework with efficient search algorithms and
latest research techniques [16].
Katib: Kubernetes-native automated tuning with pod-based paralleliza-
tion [17, 18].

Optuna: A widely adopted HPO tool that integrates
with MLflow, making it a natural choice for inclusion in
our MLflow stack evaluation [19].
Katib: Part of the Kubeflow ecosystem.

Experiment
Tracking

MLflow
Tracking

MLMD MLflow Tracking: Provides comprehensive experiment tracking [20,
7, 21, 11]. Records parameters, metrics, and artifacts for every run [22].
MLFlow’s auto logging captures parameters and metrics automatically
from supported ML libraries [21, 23].
MLMD: Unified metadata store for Kubeflow ecosystem, tracking arti-
facts, executions, and lineage across pipelines [24].

MLflow: Core MLflow component. Most popular exper-
iment tracking tool in SLR and second most popular tool
overall [2].
MLMD: Native integration with KF Pipelines, ensures
seamless metadata propagation and lineage tracking
[24].

Model Registry MLflow
Models

KF Model
Registry

MLflow Models: Stores and versions trained ML models along with
basic metadata [23].
KF Model Registry: Provides centralized model versioning and gover-
nance within Kubeflow ecosystem [25].

MLflow: Part of the MLflow ecosystem, and is the most
popular tool in MLOps projects as per the SLR [2].
KFModel Registry:Kubeflow-stack equivalent, though
unavailable in evaluated distributions as discussed in
Section 4.1.3.1 [25].

Dataset or
Artifact
Management

MLflow
Datasets

KF Artifacts MLflow Datasets: Links datasets to experiments, providing complete
lineage tracking. Captures dataset versions and associates them with
training runs [23].
KF Artifacts:Manages intermediate pipeline outputs and artifacts be-
tween pipeline components [14].

MLflow: Included as a library with the MLflow Tracking
python package [23].
KFArtifacts: Part of Kubeflow Pipelines as it is essential
for passing data between isolated pipeline components
in Kubernetes pods. [14]

Model Serving MLflow
Serving

KServe MLflow: REST API deployment with minimal configuration. Auto-
creates isolated Python environments and standardized endpoints [23].
KServe: Kubernetes-native serverless inference. Features auto-scaling,
canary rollouts, A/B testing, and multi-model serving [26].

MLflow: Part of the MLflow ecosystem, and offers
single-command deployment [23].
KServe: Pre-integrated in Charmed Kubeflow, and has
a Kubernetes-native architecture [27].

as it enables in-depth exploration of complex, real-life situations
that cannot easily be replicated or isolated in a laboratory setting
[28]. Case studies give us real-world insights rather than general
statistics. This fits our goal of studying an actual MLOps pipeline
to get detailed, practical findings that we couldn’t get from theory
alone. We followed standard case study practice; data collection and
analysis were iterative rather than strictly sequential [28]. We ran
a pilot to validate the method and scoring rubric, see Section 3.2.1.

In our work, we implemented a single-case study centred on an
industry-relevant anomaly detection pipeline. The case study was
executed using real-world data provided by the industrial partner,
IDEKO, as a realistic testbed. Rather than by deploying changes in a
live production environment, we built on an already existing anom-
aly detection pipeline, reusing production-grade code, tooling, and
data, yet we did not deploy to production machinery, thus avoid-
ing interference with operational activities. This approach allowed
us to rigorously assess the tools in a realistic use-case, thereby
ensuring the findings remain grounded in reality and relevant to
practitioners.

3.2.1 Pilot Study

The pilot study served as a crucial validation phase for our eval-
uation methodology described in Section 3.5. We selected DVC
and Feast as representative tools to test every aspect of our ex-
perimental approach before proceeding with the full evaluation.

This iterative process involved designing a systematic test plan,
implementing the tools within the IDEKO pipeline, documenting
detailed observations, applying the evaluation rubric, and assigning
final grades across all four quality dimensions. Through multiple
iterations, we refined each step as follows: the test procedures be-
came more systematic with a predefined plan, and for each tool
we kept a short list of goals to attempt. The note-taking structure
evolved to capture relevant details consistently through descriptive
field notes that served as the historical record of the case study
process which can be seen in the Appendix. Most importantly, the
rubric scoring criteria were clarified and aligned with established
standards such as ISO/IEC 25010 [29]. The pilot study revealed gaps
in our initial approach, such as evaluation criteria that were too
detailed to assess in practice, and it highlighted the importance
of capturing integration pain points. Only after achieving consis-
tent and reproducible results with DVC and Feast did we proceed
to evaluate the remaining tools, ensuring systematic consistency
throughout the thesis.

3.3 Use Case Context: IDEKO
IDEKO is a Technology and Research Centre specializing in indus-
trial production and manufacturing technologies. For this thesis, we
built upon IDEKO’s anomaly detection testbed which includes both
their precision-grinder dataset and multiclass classification models
for high-frequency time series analysis. While IDEKO’s repository
contains deprecated binary classification code and experimental

3

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

Table 2: Evaluation Framework

Criterion Definition Low Moderate High
USABILITY

Setup & Installation Simplic-
ity

Time from a clean machine to running the
vendor-supplied Hello-World example.

The process takes more than one hour.
It requires many dependencies and man-
ual steps.

The process finishes in ten to sixty min-
utes. It involves several standard steps.

A single command or guided wizard
completes installation. The example
runs within minutes with minimal pre-
requisites.

Configuration Simplicity Effort needed to configure data sources,
pipelines and parameters.

Configuration spreads across multiple
files. Trial and error is required.

Configuration needs a few edits in one
location or user-interface form.

Defaults work out of the box. A single
YAML file or wizard captures optional
tweaks.

Ease of Use Learning curve for everyday tasks and overall
intuitiveness.

The learning curve is steep. Specialist
knowledge is required.

Users with standard ML or DevOps ex-
perience become productive after some
practice.

Newcomers find the interface intuitive.
Core actions are discoverable without
prior expertise.

Documentation Support Coverage, clarity and freshness of documenta-
tion, tutorials and community answers.

Documentation is sparse or outdated.
Community questions are rarely an-
swered.

Core tasks are documented. The commu-
nity eventually responds to most ques-
tions.

Documentation is comprehensive and
current. Community channels answer
questions quickly.

FUNCTIONALITY
Functional Appropriateness Alignment of built-in functions with real work-

flow needs.
Workflows feel awkward and mis-
aligned with real practice.

Tasks are achievable with minor work-
arounds.

Features enable streamlined and intu-
itive workflows.

Functional Completeness Breadth of functions that cover all target tasks
and objectives.

Key capabilities are missing and stan-
dard tasks cannot be finished.

The tool covers the required tasks with
occasional gaps.

The feature set is complete and aligns
fully with workflows.

Reliability Stability and fault-tolerance under expected
workloads.

Failures occur frequently and the system
is unstable under load.

Occasional issues appear but the system
recovers automatically.

The system remains stable under ex-
pected conditions with robust error han-
dling.

FLEXIBILITY
Platform Support Coverage of operating systems, distributions,

architectures and deployment modes.
The tool supports only one operat-
ing system, distribution or deployment
model.

Major operating systems and common
deployment options are supported.

The tool supports many operating sys-
tems, architectures and deployment
models.

Integration Readiness Availability of pre-built integrations or a plugin
architecture.

No built-in integrations exist and heavy
custom code is required.

The tool integrates with common
ecosystem tools and needs some custom
work for others.

Many integrations are available and a
robust plugin architecture supports ex-
tensions.

Ease of Integration Effort needed to embed the tool in an existing
stack or workflow.

Tight coupling makes it difficult to re-
place or extend components.

The architecture offers some flexibility
through documented extension points.

The architecture is highly modular and
components communicate through clear
APIs.

Modularity Ability to use subsets of features independently. Users must adopt the entire suite even
for simple tasks.

Some components work standalone
while others remain tightly coupled.

Each component works on its own with
minimal coupling.

VITALITY
Community Support & Adop-
tion

Size and activity of the user base, forums and
ecosystem contributions.

The community is almost nonexistent
and user activity is minimal.

A modest following exists with occa-
sional contributions.

A large and vibrant community drives
widespread adoption.

Maturity Project age and API stability. The project is less than one year old and
breaking changes are common.

The project is two to five years old and
APIs are mostly stable.

The project is older than five years and
stability is proven.

Active Development & Main-
tenance

Frequency of commits and releases and respon-
siveness to issues.

Little or no recent development and
maintainers do not respond to issues.

Releases are infrequent but the project
is still maintained.

Commits occur frequently andmaintain-
ers respond promptly to issues.

auto-ensemble notebooks, our work exclusively focused on their
multiclass classification models, which offer different architectures
including dense, convolutional, recurrent, and LSTM networks.

The IDEKO use case centers on building an anomaly detection
model for a precision grinding machine’s Y-axis hysteresis tests.
During their daily workload, the Computer Numerical Control
(CNC) machine executes a series of backward-forward motions
under programmatic control, generating high-frequency sensor
readings (500 Hz) of four synchronized signals:

• 𝑓1: encoder position
• 𝑓2: external ruler position
• 𝑓3: motor current/intensity
• 𝑓4: commanded position

The dataset contains movement cycles collected under three
known machine conditions:

• No anomaly
• Mechanical failure (e.g., bearing or screw damage)
• Electrical failure (e.g., motor or drive faults)

The available data captures only extreme states, fully healthy
or already failed, making simple statistical features sufficient to
distinguish these clear cases. However, IDEKO’s primary interest
lies in detecting the subtle degradation phase that precedes outright
failure. In this phase, statistical features often lack the sensitivity

and may drift with ambient conditions such as temperature or
lubrication. Instead IDEKO treats each cycle as a multivariate time
series and leverages deep learning to identify temporal patterns
and detect early signs of wear that enable timely maintenance, thus
reducing unplanned downtime and preventing defective parts.

3.3.1 Provided IDEKO Scripts

The IDEKO package we build on is minimal. It contains:
• raw CSV dataset of high-frequency signals (encoder, ruler,
current, commanded position),

• preprocessing python scripts for padding/truncation and
label encoding, and

• a Python Keras training script that instantiates and trains
models based on a simple YAML configuration (NN, LSTM,
RNN, CNN).

3.4 Tool Selection and Rationale
The component selections in Table 1 were based on our SLR find-
ings [2]. We centered our stacks around MLflow and Kubeflow
as they emerged as the most popular MLOps ecosystems in our
SLR. For components offered directly by these ecosystems, we used
their native tools (e.g., MLflow Tracking, MLflow Models, Kubeflow
Pipelines, MLMD). For components that the ecosystems did not

4

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

provide, we selected the most popular standalone tools from our
SLR. For instance, since MLflow lacks a native orchestrator, we
chose Airflow as it was the most popular orchestration tool after
Kubeflow Pipelines. Similarly, we selected DVC for data versioning
in the MLflow stack as the most widely adopted data versioning
tool. The specific rationale for each tool selection is detailed in
Table 1.

3.5 Evaluation Framework
The evaluation framework, consisting of four dimensions: Usability,
Functionality, Flexibility, and Vitality, was finalized after iterative
refinement during the pilot study discussed in Section 3.2.1. Each
dimension contains multiple criteria that assess different aspects
of tool quality. The framework was developed using a bottom-up
approach during the pilot study’s tool evaluation. It was partly in-
spired by ISO/IEC 25010 [29], an international standard that defines
quality models for software and systems, addressing both product
quality and quality in use. To ensure our evaluation is objective and
systematic, each criterion has specific requirements, listed in Table
2, which define what constitutes Low, Moderate, and High perfor-
mance levels. Although we initially explored more granular scoring
systems, this simpler three-level approach proved to be a good
balance between precision and practical assessment. All criteria
were examined based on our experience implementing the IDEKO
use case, ensuring the evaluations reflected real-world usage.

4 Results
This section presents our findings from evaluating individualMLOps
tools and comparing the complete MLflow-centric and Kubeflow-
centric stacks in the IDEKO anomaly detection pipeline.

Notably, the Kubeflow evaluationwas conducted using the Charmed
Kubeflow distribution [27], as detailed in Section 4.1.3.1, which fun-
damentally differs from the MLflow stack’s architecture. While the
MLflow stack required manual installation and configuration of
each individual tool (DVC, Airflow, Optuna, Feast), Kubeflow was
deployed as an integrated platform that automatically provisioned
approximately 25 Kubernetes pods. This deployment included pre-
installed and pre-wired components: Kubeflow Pipelines, Katib, ML
Metadata (MLMD), along with supporting infrastructure pods for
MySQL (metadata storage), MinIO (object storage), and Dex (au-
thentication), among others. These components were automatically
integrated with each other, sharing credentials, storage backends,
and network configurations. The choice to use a Kubeflow distri-
bution rather than a raw Kubeflow manifest is further explored in
Section 4.1.3.1.

4.1 RQ1: Comparing MLOps Tools
This section presents the evaluation results for individual MLOps
tools across both stacks. As outlined in Table 1, eight component
types structure our evaluation, each analyzed in the following sub-
sections. They follow a consistent format with a systematic test plan
table summarizing our implementation experience, a discussion of
key findings followed by a comparative analysis between function-
ally equivalent tools. The complete systematic test procedures and
detailed scoring rationales are provided in the Appendix. Tables 16
and 17 at the end of this section consolidate all evaluation scores

across the four dimensions (usability, functionality, flexibility, and
vitality) for the MLflow and Kubeflow stacks respectively.

4.1.1 Data Versioning Tools

These tools version and store datasets, which, in the IDEKO use
case, consist of high-frequency sensor readings collected from the
CNC machine.

DVC

Table 3 presents the systematic evaluation of DVC’s functionality
across seven test scenarios, from installation through cross-platform
deployment.

Table 3: DVC’s systematic test plan and results for IDEKO
dataset versioning

Test Step Result

1 Install DVC
and configure
local MinIO
[30] storage as
the backend
storage

Installation required only a single pip command
with backend-specific variants available for S3,
Azure, GCS, and so on, and a few other commands
to configure the MinIO connection.

2 Initialize DVC
and add the
IDEKO dataset

The command dvc init created the .dvc direc-
tory within the existing .git repo. Then dvc add
data/ generated a pointer file with an MD5 hash
of the tracked CSV files. DVC automatically added
the actual data directory to .gitignore, prevent-
ing accidental commits of large files to Git.

3 Create
branches for
different
dataset
versions

Feature branches and dataset modifications
worked as expected.

4 Modify the
dataset on a
feature branch
by removing
some columns
and commit

After removing columns from a CSV file, dvc add
updated the pointer file with new hashes. Then,
dvc push uploaded modified data to the MinIO
backend, followed by standard Git commits for
the metadata changes.

5 Test rollback
functionality
to previous
dataset
versions

Rollback created a detachedHEAD,which resulted
in merge conflicts in the .dvc files. Attempting to
commit from this state caused merge conflicts in
the .dvc pointer files. The workaround involved
creating a new branch from the old commit and
then merging it into the working branch.

6 Merge
branches
containing
different
dataset
modifications

Merging branches with non-identical datasets
produced the expected .dvc file conflicts. Stan-
dard Git merge conflict resolution was applied,
although identifying the correct dataset version re-
quired examining MD5 hashes, rather than mean-
ingful diffs.

7 Clone on
macOS for
cross-platform
test

The command dvc pull retrieved an identical
dataset. Hash verification confirmed reproducibil-
ity.

5

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

DVC successfully extends Git’s versioning capabilities to large
files, maintaining Git’s familiar workflow while handling data that
would overwhelm standard repositories. This minimize the learning
curve for developers already versed in Git, though practitioners
without Git experience face a steeper learning curve. The pointer
file approach, adopted by DVC, elegantly separates metadata from
data storage, enabling abstraction of backend choices. However,
resolving merge conflicts in .dvc files is not as straightforward as
resolving source code conflicts since comparing the MD5 hashes of
files only indicates that the datasets are different, unlike code diffs,
which allow you to see the code changes directly.

There is no free Graphical User Interface (GUI) included. Instead,
Iterative, the company behind DVC, offers DVC Studio, a paid
enterprise tool that contrasts with Git’s ecosystem of free visual
tools. This may limit adoption among GUI-preferring users and
hurt DVC’s usability scores.

For the IDEKO use case, DVC adequately versions sensor data
and model artifacts. The storage integration worked reliably after
initial configuration, and its cross-platform support enabled col-
laboration across different environments. Teams comfortable with
command-line Git will find DVC’s learning curve minimal, while
those seeking visual tools or simplified workflows may struggle
with the additional complexity.

Main Findings: DVC’s Git-like interface minimizes learn-
ing curves for developers, but merge conflicts in pointer
files only show hash differences rather than meaningful
diffs, making conflict resolution guesswork. Teams should
maintain clear dataset naming conventions and branch doc-
umentation to mitigate this limitation.

LakeFS

Table 4 details the evaluation of LakeFS for versioning the IDEKO
dataset, highlighting both its intuitive User Interface (UI) and in-
frastructure complexity.

LakeFS delivers on its promise of being a "Git for data" [31], but
it comes with important infrastructure considerations. Noticeably,
the quickstart experience masks production complexity. For produc-
tion deployment, the three containerised bundled components from
the quickstart command: PostgreSQL for metadata, MinIO for ob-
ject storage, and lakeFS itself, must all be replaced with persistent,
production-grade alternatives such as Kubernetes deployments,
thereby significantly increasing deployment and configuration com-
plexity.

The web UI provides intuitive visual repository management
with drag-and-drop functionality and clear branch visualization.
Multiple merge options (CLI, UI pull requests, REST API) contribute
to its usability scores by accommodating different workflows. Addi-
tionally, branching operations avoid full data duplication, providing
significant performance advantages over simpler approaches.

However, the lakectl credential setup revealed poor error mes-
saging that complicated initial configuration where a simple typo
in credentials led to extensive debugging due to unhelpful error
messages. LakeFS excels for teams already operating on cloud ob-
ject storage who need sophisticated version control capabilities,

Table 4: LakeFS’ systematic test plan and results for IDEKO
dataset management

Test Step Result

1 Install LakeFS
using the
quickstart
setup

Installed via pip install lakefs fol-
lowed by a quickstart command (python
-m lakefs.quickstart) which deployed the
required components (LakeFS, MinIO, Postgres)
as Docker containers. An admin user is automati-
cally created and the web UI is also launched.

2 Create a
repository
with the
IDEKO dataset

Repository creation and dataset upload worked
smoothly through the simple integrated drag-and-
drop UI.

3 Configure the
lakefs CLI
management
tool (lakectl)
to interact
with the
LakeFS
Kubernetes
pod

Configuring lakectl revealed authentication issues.
Connection failed repeatedly with unhelpful error
messages. After extensive debugging, we traced
the issue to a mistyped secret key. However, the
error messages provided no useful hints about the
actual problem.

4 Create
branches for
different
dataset
versions

Branching functioned without requiring full data
duplication, offering significant performance ad-
vantages. Used simple Git-like commands such
as lakefs diff, which clearly showed changes
between commits.

5 Perform
rollback
operations to
previous
commits

Rollback using lakefs branch reset success-
fully reverted changes.

6 Merge
branches
containing
different
dataset
modifications

Merging branches worked as expected and could
be done through CLI commands, UI pull requests,
or REST API calls.

modelling its philosophy on Git with familiar branches and com-
mits. Nevertheless, Its multi component architecture introduces
significant setup overhead compared to DVC, which integrates into
existing Git repositories without requiring separate components.

LakeFS vs DVC

DVC appears in 25 of our 41 primary studies, making it the most
referenced data versioning tool in our SLR [2]. In contrast, LakeFS
received fewer mentions, suggesting lower adoption in academic
literature.

The tools differ fundamentally in their architecture. DVC oper-
ates solely as a client-side tool that stores metadata locally while
the actual data resides in separate storage hosts (S3, Azure, local
filesystem). This results in a simple-to-install tool for developers
who simply install DVC and point it to existing storage.

6

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

On the other hand, LakeFS requires a more cumbersome multi-
component deployment: a server to host LakeFS, a dedicated data-
base for metadata, and object storage. While the quickstart provides
pre-configured Docker containers with bundled MinIO storage,
production deployments demand separate provisioning of each
component.

This architectural complexity enables different capabilities. Dur-
ing our evaluation, LakeFS demonstrated zero-copy imports from
existing S3 buckets, a capability that could be useful for organiza-
tions with large storage needs.

The user experience reflects these architectural choices. DVC’s
Git-like commands felt familiar but introduced merge conflicts in
pointer files during rollbacks. LakeFS avoided conflicts through
its copy-on-write branching, but frustrated us with its Kubernetes
pods debugging. However, LakeFS’s web UI significantly improves
usability compared to DVC’s command-line focus, offering effort-
less visual repository management, drag-and-drop uploads, and
branch visualization, all of which DVC lacks. Notably, DVC does
offer DVC Studio, however it is not included in DVC’s open-source
offering and it is a paid commercial tool.

For our evaluation, which was conducted on a single machine,
DVC’s Git integration provided a gentler learning curve and mini-
mal setup overhead. LakeFS’s distributed architecture and Kuber-
netes compatibility would become advantageous only at large-scale
data lakes across large teams. For smaller teams, such as those
working on the IDEKO case, LakeFS’s infrastructure overhead may
not be justified unless they specifically need Kubernetes features
or LakeFS-specific capabilities, such as branch-level access control.

Main Findings: LakeFS delivers production-grade version-
ing with an intuitive drag-and-drop UI, but its quickstart
deployment masks significant infrastructure complexity.
Production deployments require dedicated infrastructure
components, making it excessive for projects not already
operating on cloud object storage.

4.1.2 Feature Store

Feature stores maintain computed features from raw datasets, en-
suring consistency between training and serving environments. In
the IDEKO pipeline, Feast stores derived features such as rolling
averages, statistical aggregates, and anomaly scores computed from
the raw sensor readings, thereby preventing training-serving skew.

Feast

Table 5 shows the systematic evaluation of Feast for managing
IDEKO’s computed features and preventing schema drift.

Feast provides critical schema management that prevents run-
time failures, a capability missing from versioning tools such as
those mentioned in Section 4.1.1. The Feast registry holds every re-
vision of each feature definition, serving as the authoritative record
for feature versions. If we relied only on files tracked by DVC and
later renamed a column or file, the training code would still look for
the old feature name, fail at runtime, and DVC would provide no
warning. Feast prevents this because the command feast apply

Table 5: Feast’s systematic test plan and results for IDEKO
feature management

Test Step Result

1 Install Feast Installation succeeded on the first attempt using a
single command.

2 Initialize a
new feature
repository and
configure the
backend
feature store

The command feast init was used to set up
an example repository structure with all the re-
quired files. These included feature_store.yaml
(backend storage and project settings) and
features.py (feature schemas and data types).

3 Register
IDEKO dataset
features with
Feast

Feast requires Parquet files [12], a columnar stor-
age format optimized for analytical workloads
and offering better performance than CSV. Since
IDEKO’s dataset format is CSV, we had to add a
script to convert data into Feast-compatible Par-
quet before registration.

4 Define and
register initial
feature
schemas

Configuring Feast involved modifying multiple
files, which resulted in a moderate learning curve.

5 Test schema
evolution by
updating a
feature
definition

Modified a feature definition by updating the
rolling average window size from 10 to 20. Then
ran feast apply, which displayed the exact
schema diff, blocked deployment until approval,
and logged changes after confirmation.

compares new feature definitions with the registry, shows a schema
diff, and refuses to deploy until you confirm the change.

Feast involves greater up-front configuration effort than working
directly with raw Parquet or CSV files, resulting in lower usability
scores. This effort may be justified for large teams where guard-
ing against schema drift is essential, but it may impose too much
overhead for smaller teams.

Feast’s native Airflow and Kubeflow providers boost flexibility
scores, enabling seamless integration with common orchestration
tools. For the IDEKO use case, we utilized only offline features since
the project runs batch-only experiments. The feast materialize
command, which synchronizes features to an online store for low-
latency serving, was unnecessary for our batch processing needs.
Fully leveraging Feast’s capabilities would require streaming data
rather than batch processing, which is beyond the scope of our use
case. Feast has established itself as a leading feature store according
to our SLR [2].

Main Findings: Feast enforces identical feature definitions
across training and serving by validating changes against
its registry, however the associated overhead may be dis-
proportionate for smaller teams or use cases.

4.1.3 Orchestration

Orchestrators coordinate the execution of ML pipeline components,
schedule and monitor workflows that fetch datasets, train mod-
els, and deploy them to production. In the IDEKO pipeline, the

7

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

orchestrator manages the entire workflow from DVC/LakeFS data
retrieval through feature processing, model training with HPO,
experiment tracking, and finally model serving.

Airflow

Table 6 presents the evaluation of Apache Airflow for orchestrating
the IDEKO pipeline components.

Table 6: Airflow’s systematic test plan and results for IDEKO
pipeline orchestration

Test Step Result

1 Install and
configure
Airflow for
Python

Successfully installed via pip using a constraints
file supplied by Airflow. However, it requiredmore
effort than a single-command setup since mul-
tiple environment variables needed to be con-
figured. Airflow’s constraints file, which locks
Python dependencies to fixed versions, pinned
the separately-installed Feast to an older release
without the required CLI/SDK, thereby requiring
manual override. Airflow came with an airflow
standalone command that initialized all the re-
quired components, including the database, and
created a user.

2 Create
workflow for
IDEKO case to
pull data, train,
register and
serve model
with MLflow

Writing the first pipeline required learning DAG
structure, task/operator types, and Jinja templat-
ing (for dynamic workflow parameters), creating
a moderate to steep learning curve. Triggering
the first DAG produced numerous import errors,
which required repeated updates to environment
variables, paths, and DAG definitions to fix.

3 Examine
workflow
views and
functionality
through the
dashboard

The UI displayed comprehensive graph and grid
views, SLA charts (service monitoring), and ver-
bose logs that contained significant noise. DAGs
cannot be defined in the UI, but the dashboard
provides comprehensive visibility into pipeline
health and status.

4 Evaluate
different
workflow
scheduling
triggers

Pipeline triggers worked as expected with cron-
style syntax and manual triggering was easily im-
plemented via UI.

5 Simulate task
failure to
evaluate
automatic
retry
mechanism

Scheduler auto-restarted and retried failed tasks
by default as configured.

6 Kill scheduler
component
and verify
recovery
behaviour

Airflow’s process successfully recovered when
scheduler was killed.

Airflow workflows are defined entirely in Python, providing flex-
ibility but requiring developers to learn Airflow-specific Directed
Acyclic Graph (DAG) syntax and domain-specific operators. The
documentation, although exhaustive, is poorly organized, providing

scattered reference pages instead of guided workflows and offering
only minimal tutorials. The documentation’s non-linear structure
slowed initial deployment and contributed to both the steep learn-
ing curve and lower usability scores. The platform logs every DAG
run, task instance, and event comprehensively, providing excellent
observability but at the cost of verbose and sometimes noisy logs.

The installation complexity stems from Airflow’s dependency
management approach. The constraints file ensures compatibility,
but conflicts with other project requirements may lower flexibility
scores, as seen when Feast required a manual override. During
evaluation, the airflow standalone command proved invaluable
for quick experiments, as it launched a preconfigured database, web
server, scheduler, and default user in seconds. However, Apache’s
documentation recommends splitting these components andmanag-
ing them individually in production, adding significant operational
overhead. This gap between development simplicity and production
complexity is a recurring theme among MLOps tools.

Airflow’s UI effectively visualizes pipeline execution but it does
not allow DAGs to be defined through the interface, requiring all
workflow definitions to be written in code. Despite these usability
challenges, Airflow’s maturity, reliability (such as its automatic
retry mechanisms), and widespread adoption make it a solid choice
for teams willing to overcome the initial learning curve.

Main Findings: Airflow’s Python-based DAGs and com-
prehensive UI provide powerful orchestration, but its de-
pendency management can conflict with other project re-
quirements as seen with Feast. The local development setup
masks the multi-component architecture required for pro-
duction deployments.

Kubeflow Pipelines

Table 7 documents the complex evaluation of Kubeflow Pipelines
(KFP), revealing both powerful capabilities and significant integra-
tion challenges.

KFP offers powerful orchestration capabilities but demands sub-
stantial Kubernetes expertise, resulting in a steep learning curve
that impacts usability scores. A pipeline consists of discrete com-
ponents, each running in its own container in isolation, without
shared storage. This design ensures reproducibility and prevents
cross-component interference but necessitates explicit input and
output declarations to pass data between stages. Simple workflows,
such as using Git-cloned code in subsequent training components,
became unnecessarily complex due to this isolation model. These ar-
chitectural choices create both benefits and friction points through-
out the development workflow.

The fragmented ecosystem proved challenging from the start.
We evaluated two KFP installation options, DeployKF and Charmed
Kubeflow, with each distribution imposing its own architectural de-
cisions. Both distributions include MinIO—an S3-compatible object
storage server used for storing pipeline artifacts and datasets—though
it was not prominently featured in our SLR as it typically serves as
background infrastructure rather than a primary MLOps tool. De-
ployKF pre-configured three groupswith corresponding Kubernetes
namespaces (team1, team2, and admin), while Charmed Kubeflow

8

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Table 7: Kubeflow Pipelines’ systematic test plan and results
for IDEKO containerized orchestration

Test Step Result

1 Install and
setup
Kubeflow
Platform
(includes
Kubeflow
Pipelines)

Multiple installation options complicated the se-
lection process as there was no obvious default.
We chose Charmed Kubeflow [27] which required
Ubuntu 22 (Linux distribution) [32], MicroK8s
(lightweight Kubernetes) [33], and Juju (Canoni-
cal’s application lifecycle manager) [34] as prereq-
uisites [27]. The deployment took 15 to 20 min-
utes to provision approximately 25 services, and
port forwarding required namespace and service
names that differed from the documentation.

2 Create a user
account
through Dex
(OpenID
Connect
provider)

Dex authentication worked with the default cre-
dentials, but the user and namespace structure
varied significantly between Kubeflow distribu-
tions, with documentation failing to clarify these
distribution-specific architectural decisions.

3 Create a
pipeline that
clones the
code, pulls the
dataset, trains
and registers
the model.

Initial pipeline creation encountered SQL char-
acter set incompatibilities between the KFP SDK
and deployment. While LakeFS was our selected
tool, we opportunistically tested DVC integration
since our data was already versioned in it from
the MLflow stack evaluation. DVC integration re-
vealed critical credential conflicts: both DVC and
Kubeflow’s MinIO use identical AWS S3 creden-
tial formats but in different namespaces, causing
hours of debugging. LakeFS worked immediately
as its Helm chart includes a pre-configured MinIO
instance, avoiding these conflicts. However, this
finding highlights a key limitation: quickstart de-
ployments mask production complexity where
LakeFS would face similar credential challenges
when using external object storage. The UI could
observe but not define pipelines.

4 Test the
different
pipeline
upload
methods

Manual upload required compiling the python
Kubeflow script to a Kubeflow compatible YAML
format, creating a pipeline and an experiment, and
running them separately, making iterative devel-
opment cumbersome. Programmatic submission
streamlined the process but still required authen-
tication setup. Alternatives such as Kubeflow’s
built-in Jupyter notebooks or VS Code simplified
authentication but required us to abandon our cus-
tomary IDEs along with their familiar tooling and
extensions.

5 Examine logs
and debug
information
through UI
and kubectl

Logging visibility was poor since only the last
failed component’s logs appeared in the UI, and
viewing previous components required kubectl
commands through the terminal.

6 Re-run
identical
pipelines to
verify caching
behaviour

Caching functioned correctly. However, failed
runs were also cached, requiring manual invalida-
tion through code changes, which proved difficult
due to undocumented syntax differences between
KFP SDK v1 and v2.

7 Force
component
pod failures to
test retry and
recovery
mechanisms

KFP detected terminated pods and automatically
restarted them, causing the pipeline to pause at the
failed component and resume once recovery was
complete, demonstrating robust fault tolerance.

created only a single admin namespace. These variations are not
part of core Kubeflow but rather packager-specific choices that
significantly impact user experience. Creating a functional user in
DeployKF required understanding the pre-built group hierarchy and
navigating cross-namespace permissions, such as mounting MinIO
secrets (storage credentials) from the Deploykf-MinIO namespace
into pipelines running in the team1 namespace.

Credential management emerged as a significant challenge, par-
ticularly when integrating data versioning tools. While LakeFS was
our planned tool for the Kubeflow stack, we opportunistically tested
DVC integration since our IDEKO dataset was already versioned
in it from the MLflow stack evaluation. This unplanned test re-
vealed critical insights: DVC and Kubeflow’s integrated MinIO both
use S3-compatible storage with identical AWS credential formats
but expect them in different namespaces, creating authentication
failures that took hours to debug. The DeployKF distribution fur-
ther complicated this by storing credentials in parent namespaces,
requiring complex mounting and DNS aliasing.

LakeFS initially appeared superior because its Helm chart in-
cludes a pre-wired MinIO instance, allowing pipeline components
to work immediately without credential configuration. However,
this exposes a crucial limitation of our evaluation: quickstart deploy-
ments canmask production complexity. In a production deployment
where LakeFS would connect to external object storage rather than
its bundled MinIO, teams would likely encounter the same cre-
dential management nightmares we experienced with DVC. This
finding reinforces that our quickstart-based evaluation may un-
derestimate the operational complexity teams face in production
environments.

The platform’s complexity is evident from the start, with nu-
merous deployment options and no clear default, challenges with
namespace, permission, and credential management, and a steep
learning curve for both Kubernetes and Kubeflow-specific concepts.
Although the built-in Jupyter notebook environments simplify au-
thentication and the visual DAG representation makes pipelines
easier to understand, these benefits do not offset the operational
overhead for most teams.

The poor logging visibility, caching quirks, and UI limitations
collectively reduce KFP’s debugging efficiency and developer pro-
ductivity. More critically, infrastructure issues such as the following
can derail entire deployments. Kubeflow’s MySQL pod suddenly
started consuming 16GB of RAM regardless of configuration at-
tempts. Despite updating Juju’s charm configurations and trying
to modify the MySQL pod’s resource limits directly, it consistently
respawned with the same 16GB allocation. This brought our test
machine (32GB total) to a crawl and ultimately forced complete
cluster deletion and recreation.

Our findings indicate that large organizations, such as Spotify
[35], select Kubeflow because they have the capacity to manage
its complexity, and they require a Kubernetes native solution at
a very large scale. Conversely, smaller teams that lack dedicated
operations support or a genuine requirement for high availability
should not adopt this platform.

Notably, Kubeflow offers enterprise-level scaling capabilities
such as distributed training and cross-data centre deployment. How-
ever, testing these capabilities exceeds the scope of this study. Teams

9

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

that cannot leverage them incur substantial usability costs for min-
imal benefit.

Main Findings: KFP’s containerized components ensure
reproducibility and cloud-native scaling, but credential man-
agement and namespace conflicts between integrated tools
can create substantial debugging challenges. Teams should
only adopt KFP if they have deep Kubernetes expertise or
genuine need for distributed orchestration.

4.1.3.1 Kubeflow Distributions

The first obstacle arises at installation, since Kubeflow only provides
raw manifests and relies on third parties to package the stack, with
no official installer available. As a result, organizations often pack-
age Kubeflow into distributions, each with different tools, versions,
and target platforms. Cloud providers offer platform-specific ver-
sions, including Azure Kubernetes Service, IBM Cloud Kubernetes
Service and Google Kubernetes Engine, whereas only two generic
distributions exist for local deployment: DeployKF and Charmed
Kubeflow.

DeployKF bundles Kubeflow tools with Airflow and MLflow into
a single deployment [36], pre-configuring users, MinIO storage,
and ArgoCD, making it an opinionated ML platform rather than
a pure Kubeflow distribution. However, DeployKF lacks critical
components like KServe and Kubeflow Model Registry, limiting its
capabilities for model serving and versioning. Charmed Kubeflow,
maintained by Canonical, provides the latest Kubeflow version but
depends on other Canonical software such as Ubuntu 22, MicroK8s,
and Juju. In contrast, DeployKF does not tie users to a Kubernetes-
specific variant or a specific operating system.

While Charmed Kubeflow comes with KServe pre-integrated,
it notably omits Kubeflow Model Registry and instead promotes
MLflow integration for model registry capabilities [27]. One advan-
tage of both distributions is that they include pre-wired Kubeflow
components, reducing integration complexity compared to manual
setup. Raw Kubeflow manifests exist, but according to the docu-
mentation, they are "intended to be used by users with Kubernetes
knowledge and as the base of packaged distributions", suggesting they
target experienced Kubernetes practitioners rather than typical end
users.

We ultimately selected Charmed Kubeflow, despite DeployKF
appearing simpler, because it included the latest Kubeflow version
with KServe pre-integrated, which was necessary for our evalua-
tion. However, this decision came with future costs as the MySQL
component consumed 16GB of RAM with no clear way to reduce
it, and the Canonical-specific tooling introduced another consider-
ation for teams not using Canonical’s software. Canonical is quite
controversial in the open source community because its proprietary
Snap package manager is required to install the other Canonical
software, such as MicroK8s and Juju [37, 27]. This distribution
fragmentation forces teams to choose between outdated but conve-
nient packages or current yet complex installations, with no clear
"default" Kubeflow experience.

4.1.3.2 Airflow vs Kubeflow Pipelines

The contrast betweenAirflow and Kubeflow Pipelines reveals funda-
mentally different approaches to workflow orchestration. Airflow’s
installation requires a single pip command and runs on standard
Python infrastructure, while Kubeflow demands Kubernetes exper-
tise, multiple prerequisite tools, and approximately 25 deployed
services. The difference in complexity between Airflow and Kube-
flow extends throughout the user experience. Despite their domain-
specific syntax, Airflow’s Python-based DAG definitions remain
accessible to data scientists familiar with Python. Meanwhile, Kube-
flow’s containerized components require understanding Docker,
Kubernetes pods, and complex artifact passing between isolated
pipeline components that complicate debugging.

Documentation quality is comparable between the two plat-
forms, but in different ways. Airflow documentation is centralized
on Apache’s site, yet it suffers from scattered, non-linear organi-
zation and just a few step-by-step tutorials. Contrastingly, Kube-
flow’s documentation is fragmented across the main project site,
distribution-specific pages, and individual component repositories.
Although Kubeflow’s core documentation is comprehensive and
well-structured, users must piece together information from multi-
ple sources, which further steepens the learning curve for teams
evaluating deployment options.

Both platforms offer similar core features such as visual DAG
representations, pipeline caching, automatic retries upon failure,
and various triggering mechanisms such as cron-based, manual,
and code hooks. However, these platforms are not aimed at the
same audiences. Kubeflow primarily targets teams on a Kubernetes
architecture requiring massive scale, as demonstrated by Spotify’s
production Kubeflow pipeline [35]. However, for the purposes of
this study, the massive operational overhead and need for spe-
cialized knowledge make it unsuitable for smaller teams. On the
other hand, Airflow excels at cluster deployments where simplicity
outweighs infinite scalability. Notably, our evaluation did not test
Airflow’s or Kubeflow’s scalability in this evaluation.

The platforms’ ecosystem scope also differs significantly. Air-
flow provides a pure orchestration tool that integrates with ex-
ternal systems through operators, namely the Python and Bash
operators. Kubeflow provides an entire ML platform with option-
ally pre-integrated tools that enable experiment tracking (MLMD),
hyperparameter tuning (Katib), and model serving (KServe). This
comprehensiveness appeals to practitioners seeking a unified solu-
tion, whereas Airflow relies on users integrating their own tools,
which may require additional configuration in multi-pod produc-
tion deployments. However, this was not an issue on our single-host
machine as it could easily run Bash or Python operators alongside
other tools. Nevertheless, Airflow’s configuration complexity would
increase in a multi-machine deployment.

4.1.4 Experiment Tracking

Experiment tracking tools store metadata about ML experiments,
including hyperparameters, metrics, model versions, and datasets.
In the IDEKO pipeline, these tools track which combinations of
model architectures (NN, LSTM, CNN, RNN), hyperparameters, and
training configurations produced the best classification accuracy

10

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

for detecting anomaly types (electrical anomaly, mechanical failure,
or no anomaly).

MLflow Tracking

Table 8 shows our evaluation of MLflow Tracking for managing
IDEKO experiment metadata.

Table 8: MLflow Tracking’s systematic test plan and results
for IDEKO experiment management

Test Step Result

1 Install MLflow
via pip

Straightforward single command installation
through pip without any dependency conflicts
or version issues.

2 Setup local
MLflow server
and dashboard

Launching the MLflow tracking server and web
dashboard required two simple shell commands
with each needing only a port definition, after
which the UI was immediately accessible at local-
host.

3 Register
IDEKO
training runs
as separate
MLflow
experiments

To enable manual tracking, we wrapped the train-
ing code in mlflow.start_run() context blocks
and specified which parameters to log. This re-
quired onlyminormodifications to existing scripts
to capture custom metrics and parameters along-
side the automatic logging.

4 Enable
automatic
experiment
tracking

MLflow’s auto logging functionality for Keras cap-
tured training metrics (loss, accuracy), hyperpa-
rameters (learning rate, batch size, optimizer set-
tings), and the trained model requiring no addi-
tional code [23].

5 Track
experiment
metadata and
custom
metrics

Custom metrics and tags were successfully logged
to organize and identify different experimental
configurations, with all metadata properly associ-
ated with their respective runs.

6 View what has
been captured
in the UI and
examine
available
functionalities

The intuitive MLflow dashboard displayed every
training run with rich visualizations, including ex-
tensive graphs of metrics over time and clear links
between each training run, its input dataset and
parameters and the resulting output model. It also
provided advanced filtering capabilities by date
range, custom tags, or specific metric thresholds.

MLflow Tracking excels in developer experience because of its
thoughtful design choices. Its documentation begins with a straight-
forward five-minute quickstart guide that brings you up to speed
in a linear fashion. Additionally, the documentation includes an
AI chatbot that can speed up troubleshooting by suggesting code
snippets and linking directly to relevant pages. MLflow Tracking’s
concepts and module naming are intuitive, avoiding the need to
learn new abstractions that plague other MLOps tools such as KFP.
Furthermore, the quick start guide explicitly recommends using
smaller tracking blocks rather than wrapping entire training scripts
in a single mlflow.start_run() block, as failures in large blocks
require manual cleanup.

MLflow’s auto logging feature eliminates boilerplate code for
supported frameworks like Keras, reducing the code needed to track

experiments comprehensively. However, teams using unsupported
frameworks must resort to explicit logging calls, whichmay become
tedious. The platform also offers optional system-metrics logging
and custom tracing spans for teams needing deeper observability.
Tight integration with other MLflow modules, such as MLflow
Models and MLflow Datasets, creates a cohesive ecosystem that
streamlines end-to-end workflows. However, this integration can
be a double-edged sword when workflows must incorporate non-
MLflow components, impacting the flexibility score.

The combination of minimal setup effort, comprehensive auto-
matic tracking, and an intuitive UI contributes to high usability
scores. The active development and extensive framework support
underpin strong vitality ratings, making MLflow Tracking a solid
choice for teams seeking low-friction experiment management.

Main Findings: MLflow Tracking stands out with auto-
matic parameter capture for supported frameworks, intu-
itive UI, and class-leading documentation including an AI
chatbot. Its minimal setup effort and comprehensive track-
ing capabilities make it the most accessible tool among all
evaluated options.

ML Metadata

Table 9 shows the challenging evaluation of ML Metadata (MLMD)
for metadata storage in the Kubeflow ecosystem.

MLMD functions as a metadata storage system consumed by
other tools rather than as a user-facing experiment tracking plat-
form. This became immediately apparent when attempting to view
the stored metadata. While the Kubeflow dashboard displays a lin-
eage graph by reading from the MLMD datastore, MLMD itself
provides no visualization capabilities. Users must retrieve metadata
through code or external tools. In our evaluation, accessing the
metadata required navigating through Kubernetes pods to reach
the MinIO storage where it resides in SQL format. This complexity
forced us to deploy a separate stand-alone MLMD instance purely
for evaluation purposes.

In MLMD, every hyperparameter, metric, and artifact requires
an upfront schema definition with strongly-typed properties. Un-
like tools such as MLflow, which capture parameters automatically
through autologging, MLMD demands explicit declaration of data
structures and schemas for each type of metadata (datasets, models,
training runs, experiments) before any information can be stored.
This verbosity ensures consistent metadata structure but reduces
usability for straightforward use cases like the IDEKO pipeline. A
retrieval script was needed to successfully query these relationships
programmatically. However, constructing even simple queries re-
quired understanding MLMD’s custom property storage model. In
fact, finding which hyperparameters were used in a specific run
required multiple queries before the correct one was identified.

MLMD stores comprehensive lineage as a directed graph, captur-
ing dataset versions, preprocessing, and hyperparameters. However,
accessing this metadata proved consistently challenging. MLMD
supports diverse storage backends, including SQLite for develop-
ment and MySQL or PostgreSQL for production deployments, but

11

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

Table 9: MLMD’s systematic test plan and results for Kube-
flow metadata management

Test Step Result

1 Install MLMD MLMD was pre-installed in both Charmed Kube-
flow and DeployKF distributions, storing meta-
data in the cluster’s MySQL pod. However, ac-
cessing this data required navigating Kubernetes’
abstractions and understanding MinIO (the S3-
compatible object storage system) layers.

2 Update the
training script
to register
metadata

Integrating MLMD into the IDEKO pipeline re-
quired explicitly defining schemas for every ele-
ment we wanted to track. Unlike MLflow’s auto-
matic capture, MLMD demanded upfront declara-
tion of data types for datasets, models, training
runs, experiments, and each individual hyperpa-
rameter before any metadata could be stored.

3 Execute
training and
capture
metadata

Initial attempts to inspect the stored metadata
through Kubeflow’s Kubernetes pods proved
overly complex, leading to the installation of
MLMD as a standalone library outside of Kubeflow
with a local MySQL backend for better visibility
into what was actually being stored.

4 Build a
retrieval script
to query saved
metadata

Constructing queries required understanding
MLMD’s property-based storage model, where
retrieving experiments with specific hyperparam-
eter values required multiple API calls through
specific paths.

5 Verify that
each model is
correctly
linked to its
source dataset

MLMD successfully tracked the complete work-
flow, including which dataset was used, what pre-
processing steps were applied, and which model
resulted from training on that dataset. This track-
ing captured every step and transformation in the
pipeline, showing how raw data eventually be-
came a trained model.

6 Examine
metadata
visibility and
accessibility

MLMD does not offer visualization for the training
run through the Kubeflow pipelines UI. On the
other hand, direct database access in the stand-
alone library revealed MLMD’s complex internal
schema with typed properties and graph-based
relationships.

this flexibility comes at the cost of ease of use, since all interaction
must occur through programmatic queries or direct SQL inspection.

Documentation challenges compounded these usability issues,
as the official MLMD documentation links from GitHub often led
to dead pages [38], while scattered references on the TensorFlow
Extended website provided incomplete guidance [39]. MLMD’s frag-
mented documentation may be a consequence of its maintenance
handover from Kubeflow to the TFX team.

For teams using Kubeflow, MLMD provides the underlying stor-
age that powers pipeline visualization and artifact tracking. How-
ever, as a standalone tool, it offers little beyond raw metadata stor-
age, which explains why even Kubeflow distributions that include
MLMD also provide integration guides for more user-friendly al-
ternatives like MLflow with DeployKF bundling it directly [36].

Main Finding:MLMD functions purely as a backend meta-
data store with no UI, requiring explicit schema defini-
tions for every parameter and multiple API calls for sim-
ple queries. Even Kubeflow distributions acknowledge this
limitation by bundling or recommending MLflow for user-
facing experiment tracking.

4.1.4.1 MLFlow Tracking vs MLMD

MLflow Tracking and MLMD serve different purposes and target
different users. MLflow started as a tracking module and has grown
into a complete ecosystem. According to our SLR [2], it remains
the most popular MLOps tool. It tracks model training metadata,
datasets, model artifacts, system metrics, and custom traces. Addi-
tionally, its auto logging feature captures parameters automatically
for supported frameworks like Keras and PyTorch, requiring no
manual configuration.

MLMD functions as Kubeflow’s backend metadata store. It tracks
only the artifact metadata required for pipeline execution. Unlike
MLflow, MLMD provides no user interface. All interaction happens
through Python code or SQL queries.

The tools differ significantly in setup and usability. MLflow runs
with a single command and includes an embedded database. Its
dashboard shows all experiments, metrics, and models immedi-
ately. Contrastingly, MLMD requires an external database (SQLite,
MySQL, or PostgreSQL) and offers no built-in visualization. Fur-
thermore, creating metadata entries in MLMD requires explicit
type definitions and property schemas. Notably, MLflow captures
standard metrics automatically and accepts custom logging with
minimal code.

Both Kubeflow distributions we tested recognize that MLMD
alone cannot meet user needs for experiment tracking, acknowledg-
ing the huge gap in features between MLflow and MLMD. Charmed
Kubeflow’s introductory documentation provides a guide for adding
MLflow to the stack, whilst DeployKF includes MLflow tracking
pre-integrated alongside MLMD.

Based on our evaluation, teams needing experiment tracking
should use MLflow. MLMD only makes sense as part of a full Kube-
flow deployment where other components handle the user interface.

4.1.5 Model Registry

Model registries manage versionedmodels and their lineage.We use
them to record which dataset, run, and hyperparameters produced
each model, and to let serving components fetch the exact version
for deployment.

MLflow Models

Table 10 presents the evaluation of MLflow Models for packaging
and versioning IDEKO’s trained neural networks.

Packaging a model using MLflow Models required minimal code
and effort, demonstrating excellent integration between MLflow
modules. Its unified UI keeps training runs and their resulting
models tightly linked. Additionally, the automatic capture of

12

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Table 10: MLflowModels’ systematic test plan and results for
IDEKO model packaging

Test Step Result

1 Setup MLflow
Models

The mlflow.modelsmodule was already included
in the core MLflow package, requiring no addi-
tional installation beyond importing the package
and the initial MLflow Tracking setup.

2 Save the
trained Keras
model as an
MLflow Model

Calling mlflow.pyfunc.log_model() during
training successfully automatically stored each
model bundled with its runtime signature, input
example schema, and the list of dependencies
(requirements.txt).

3 Train multiple
models with
different
metadata

Multiple training runs produced distinct model
artifacts, with each artifact maintaining its own
metadata, version information, and associated
metrics from the training process.

4 View saved
models in the
UI Models tab
and their
lineage

The UI Models tab clearly displayed every saved
model artifact, showing its originating run ID,
training metrics, and model version, input param-
eters and dataset. This made it easy to track which
experiment produced which model.

5 Test model
loading for
inference

Loading the test model with MLflow’s Python
function wrapper, mlflow.pyfunc.log_model(),
which provides a standard interface for models,
returned a ready-to-use callable model object for
making predictions. Additionally, the custom class
loader successfully incorporated IDEKO’s feature
engineering code into the model pipeline, allow-
ing preprocessing to be bundled with the model.

requirements.txt ensures reproducibility without the need for
manual dependency tracking.

The ability to use either the standard pyfunc loader or custom
class loaders supports different deployment scenarios. The pyfunc
loader (MLflow’s Python function wrapper that provides a uni-
versal interface for models regardless of their framework) offers a
lightweight, standardized approach that deploys cleanly to various
serving tools, including MLflow Serving. However, it cannot han-
dle complex feature pipelines by itself. Alternatively, the custom
class loader option allows embedding custom preprocessing logic
directly with the model.

Main Finding: MLflow Models seamlessly captures model
artifacts with dependencies and signatures during train-
ing, enabling single-command deployment later. The tight
integration with MLflow Tracking eliminates additional
configuration, demonstrating how ecosystem cohesion re-
duces integration friction.

KF Model Registry

The Kubeflow Model Registry, designed for model versioning and
lifecycle management, could not be evaluated as it was absent from
both the DeployKF and Charmed Kubeflow distributions. Without
this component, Kubeflow relies on basic artifact storage through

Kubeflow Artifacts, which lacks the versioning and metadata track-
ing capabilities that MLflow Models provides.

4.1.6 Dataset or Artifact Management

These tools version datasets and intermediate artifacts, then expose
lineage from raw data to trained models so every run is traceable.

MLflow Datasets

Table 11 documents the evaluation of MLflow Datasets for tracking
IDEKO dataset versions and their lineage.

Table 11: MLflow Datasets’ systematic test plan and results
for IDEKO data lineage tracking

Test Step Result

1 Install MLflow
Datasets

The MLflow Datasets library was included with
the standard MLflow installation, requiring no
additional packages or configuration beyond the
base setup.

2 Launch
MLflow server
and access
dashboard

Server startup remained identical to MLflow
Tracking setup explained in Table 8. Using the
MLflow Datasets API required an explicit import
in Python scripts using import mlflow.data.
Once imported, MLflow Datasets’ functionality
was immediately accessible through MLflow’s ex-
isting dashboard interface.

3 Register
IDEKO’s CSV
dataset

Each mlflow.data.log_dataset() call success-
fully captured IDEKO’s dataset along with auto-
matically generated metadata including file path,
content hash, schema, record count, and times-
tamp.

4 Test dataset
versioning
after applying
modifications

After modifying the dataset by adding rows
and adjusting features, the subsequent
log_dataset() call automatically created a
new dataset version, with the metadata clearly
reflecting all changes made.

5 Verify that
each training
run correctly
links to its
specific
dataset version

When rerunning training scripts with different
dataset versions, MLflow correctly associated each
experiment training run with the specific dataset
version it used, as clearly displayed in MLflow’s
UI.

6 Explore
dataset lineage
in the UI

The MLflow Datasets tab provided a comprehen-
sive version comparison, showing schema dif-
ferences between versions and enabling lineage
tracking from any model or run to its exact train-
ing dataset.

Adding dataset logging using MLflow Datasets required only
one extra API call per experiment, yet this simple addition made
dataset origin explicit and discoverable through the MLflow UI.
The dedicated UI views and automatic metadata capture greatly
simplified audit trails and debugging. Notably, the ability to trace
from a deployed model back to its exact training data snapshot
addresses a critical gap in ML reproducibility.

Given that MLflow Datasets is built directly on top of MLflow
Tracking rather than requiring a separate system, teams avoid the

13

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

complexity of managing multiple tools. However, this architectural
design also means dataset management remains tied to the MLflow
ecosystem, potentially limiting teams that need to integrate with
existing data catalogues or versioning systems.

MLflow Datasets’ version history and lineage features worked
seamlessly and proved to be a natural and valuable extension to
MLflow’s tracking capabilities, requiring minimal code changes
while providing high observability into the data lifecycle.

Main Findings: MLflow Datasets requires only one ad-
ditional API call to establish complete data lineage from
model to training dataset version. This minimal effort pro-
vides crucial reproducibility often missing in ML pipelines,
though it constrains teams to the MLflow ecosystem.

Kubeflow Artifacts

In Kubeflow Pipelines, artifacts are typed ML assets, for example
datasets, models, and metrics. KFP stores them in an object store via
the pipeline root, MinIO by default in common installs, and tracks
their lineage in the Metadata store that the UI can visualize. This
is background infrastructure for pipelines rather than an end-user
tool, so we did not evaluate it.

4.1.7 Hyperparameter Optimization

Hyperparameter Optimization (HPO) tools automate the search for
optimal model configurations by systematically exploring parame-
ter spaces. In the IDEKO pipeline, these tools determine the best
combination of learning rates, batch sizes, and network architec-
tures to maximize classification accuracy for our anomaly detection
model.

Optuna

Table 12 presents the evaluation of Optuna for optimizing IDEKO
model hyperparameters as part of our MLFlow stack.

Optuna achieves an impressive balance between power and sim-
plicity through its Python-native approach. Unlike other HPO li-
braries such as Katib, which require YAML configuration files, Op-
tuna lets developers define search spaces directly in their training
code. This is achieved using Python decorators and functions, keep-
ing the optimization logic close to the model definition. The frame-
work’s native support for popular ML libraries including PyTorch,
TensorFlow, Keras, Scikit-learn, XGBoost, and LightGBM, enables
straightforward integration through wrapper functions. However,
developers must still manually define which parameters to optimize
and their search ranges, unlike AutoML tools, such as AutoGluon or
AutoKeras, that analyze models to automatically determine tunable
parameters and reasonable ranges.

MLflow’s integration with Optuna revealed the following dif-
ferences in parameter handling. MLflow’s parameter immutabil-
ity, intended to ensure experiment reproducibility, clashes with
Optuna’s iterative trial approach. While this initially caused frus-
tration due to rejected parameters, Optuna provides a separate
optuna-integration package featuring an MLflowCallback that
resolves the conflict. This demonstrates mature ecosystem thinking,

Table 12: Optuna’s systematic test plan and results for IDEKO
HPO

Test Step Result

1 Install Optuna
and the
optional
dashboard

Installation completed with a single pip com-
mand for the core library. The dashboard
required installing an additional package,
optuna-dashboard, also using pip, maintaining
the tool’s modular approach.

2 Create an HPO
study for
IDEKO’s Keras
models

Optuna recognized all four of IDEKO’s Keras mod-
els (NN, LSTM, CNN, RNN) out of the box without
requiring framework-specific configuration. It ac-
cepted Keras objects directly for optimization.

3 Configure a
search space
for learning
rate, batch size,
and hidden
units

The search space definition for the learning rate
(0.0001-0.1), batch size (16-128), and hidden units
(32-512) was embedded directly in the objective
function. This follows Optuna’s approach, where
optimization configuration is defined in code
rather than separate configuration files.

4 Execute an
optimization
study with the
TPE sampler

We ran 50 trials with the default Tree-structured
Parzen Estimator (TPE) algorithm, a Bayesian op-
timization method, to explore the hyperparameter
space. The best configuration appeared around
trial 30, and subsequent trials confirmed it.

5 Integrate
Optuna with
MLflow
tracking

Logging each Optuna trial to MLflow initially
failed with parameter conflict errors, sinceMLflow
rejected duplicate parameter names when mul-
tiple trials were logged within the same run.
Resolving this issue required the Optuna pack-
age, optuna-integration, which automatically
spawns child runs for each trial with only a few
additional lines of configuration.

6 Test pruning
functionality

Optuna’s pruner implementation automatically
stopped trials performing below the median of
previous trials at the same step, with 12 out of
50 trials pruned early, reducing total computation
time.

7 Examine
dashboard
visualization
and study
diagnostics

The dashboard provided comprehensive visualiza-
tions, including optimization history plots, par-
allel coordinate diagrams, and parameter impor-
tance rankings. These offered immediate insights
into the optimization process.

as the integration package supports multiple tools beyond MLflow,
including TensorBoard, scikit-learn, and Weights & Biases.

Optuna’s flexibility extends beyond basic hyperparameter search.
Its extensive catalogue of samplers (TPE, CMA-ES, Random, Grid)
and pruners (Median, Hyperband, Successive Halving) allows teams
to optimize their optimization strategy itself [16]. This flexibility
comes with a trade-off: while in-memory and SQLite storage work
seamlessly, configuring PostgreSQL or MySQL backends for produc-
tion deployments requires explicit database setup and connection
management that lacks comprehensive documentation.

For the IDEKO use case, Optuna’s pruning capabilities allow
early termination of unpromising trials. The dashboard’s real-time
visualizations helped identify parameter relationships that were
not obvious from individual trial results. Although our evaluation
focused on single-machine execution and did not test GPU-based

14

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

parallelism or multi-node distribution, Optuna does support these
capabilities through its distributed optimization features.

Main Findings: Optuna’s Python-native approach ele-
gantly resolves integration conflicts with MLflow through
automatic child run spawning, representing a rare example
of tools proactively addressing ecosystem integration chal-
lenges rather than leaving users to debug incompatibilities.

Katib

Table 13 documents the evaluation of Katib for Kubernetes-native
HPO.

Katib demonstrates how Kubernetes-native design can uniquely
impact HPO in both positive and negative aspects. On the positive
side, running trials in isolated pods ensures clean environments and
prevents interference. Additionally, Katib’s automatic cleanup pre-
vents resource leaks that plague long-running optimization jobs. On
the other hand, accessing logs from failed trials required kubectl
commands instead of the straightforward experience the UI aims to
provide. This logging limitation appeared throughout our Kubeflow
evaluation, suggesting a systemic issue rather than a Katib-specific
problem.

Katib’s tight integration with Kubeflow ensures that experiments
appear as first-class citizens in the platform, with dedicated UI sec-
tions, automatic resource management, and seamless pipeline inte-
gration. Particularly, the parallel coordinates visualization stands
out, offering insights into parameter interactions that tabular re-
sults cannot convey. This visualization revealed clear patterns in
our IDEKO experiments, showing that moderate batch sizes outper-
formed extremes regardless of the learning rate. However, Katib’s
containerization requirement fundamentally changes the develop-
ment workflow. Unlike Optuna, where you simply wrap existing
training code, Katib demands the containerization of every training
script and that parameters be printed in a specific format. Although
the latter seems like a minor change, it cost us considerable debug-
ging time when our initial experiments failed with cryptic error
messages. This exemplifies a recurring pattern in Kubeflow, where
powerful capabilities are placed behind interfaces that assume deep
Kubernetes knowledge.

The eight-section configuration process, while comprehensive,
reveals another design philosophy difference. Where Optuna lets
developers define parameters programmatically as needed, Katib
enforces upfront specification of every aspect of the optimization.
Its structure helps prevent configuration errors but makes iterative
experimentation more cumbersome. Each parameter change could
be edited through the UI rather than editing code. However, Katib’s
UI defines "success" based on experiment completion rather than
goal achievement, which presents a critical usability issue. This
is demonstrated by our experiment that ran to completion and
displayed a green "successful" status check mark, yet achieved only
50% accuracy against a 95% target. This could mislead teams into
thinking that optimization completed successfully. The disconnect
between the technical success of the component (job completed)
and the actual experimental goal (meeting the accuracy threshold)
highlights the need for a clearer visual distinction.

Table 13: Katib’s systematic test plan and results for con-
tainerized hyperparameter search

Test Step Result

1 Access Katib
UI through the
Kubeflow
dashboard

Katib came pre-integrated in both the DeployKF
and Charmed Kubeflow distributions, appearing
as a dedicated tab in the Kubeflow dashboard with-
out requiring any additional configuration or ser-
vice deployment.

2 Define an
experiment
through the UI

Creating a Katib experiment required navigating
through eight configuration sections in the UI,
with form validation and selection menus for each
field to guide configuration.

3 Execute the
hyperparame-
ter search

Initial experiments failed with "Couldn’t find any
successful Trial" error. Katib’s containerized train-
ing requires parameters to be printed in a specific
format, so the existing IDEKO training scripts had
to be modified accordingly. Once the output for-
mat was fixed, the training script, which worked
fine locally, however still required careful adjust-
ments to produce the required output format Katib
expected within its containerized environment.

4 Monitor trial
progress and
parallel
execution

Bayesian optimization with 20 maximum trials
and 4 parallel workers executed successfully. The
trials tab displayed real-time updates showing hy-
perparameter combinations ranging from learning
rates of 0.0001 to 0.1, batch sizes from 16 to 128,
and network architectures from 32 to 256 hidden
units.

5 Validate
resource
allocation and
pod
management

Each trial ran in its own isolated Kubernetes pod.
After each trial was completed, Katib automati-
cally deleted the pod and freed its allocated CPU
and memory resources, preventing resource accu-
mulation from failed or completed experiments.
However, accessing logs from individual trial pods
before cleanup required considerable effort, need-
ing kubectl commands due to Kubeflow’s limited
log viewing capabilities.

6 Test early
stopping
behaviour

The early stopping mechanism functioned as con-
figured, terminating trials that showed no im-
provement after specified iterations.

7 Examine
parallel
coordinates
visualization

The parallel coordinates plot elegantly revealed
that lower learning rates combined with moder-
ate batch sizes (around 64) consistently achieved
better accuracy. However, the UI marked the ex-
periment as "successful" despite not reaching the
target metric, potentially misleading users.

For teams already invested in Kubeflow, Katib provides sophisti-
cated HPO without additional tool installation. The parallel trial
execution, automatic resource management, and integrated visual-
izations justify the containerization overhead for large-scale opti-
mization tasks. For smaller teams or single-machine deployments,
the requirement to containerize every training script and navi-
gate complex UI configurations makes lightweight alternatives like
Optuna more practical. However, its ready-made integration with
Kubeflow does not introduce additional friction. Therefore, for

15

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

teams already adopting Kubeflow, Katib is the obvious choice, but
it alone is not a reason to adopt Kubeflow.

Main Findings: Katib’s pod-based trial isolation prevents
resource leaks through automatic cleanup, but its require-
ment for specific output formats breaks framework integra-
tions. Training scripts require extensive modifications to
produce the expected parameter format for Katib to func-
tion correctly.

Optuna vs Katib

Optuna provides a simpler integration path than Katib. Installing
Optuna requires one pip command and the library works immedi-
ately with existing Python code. Contrastingly, Katib requires con-
tainerizing the training script, defining Kubernetes specifications,
and understanding the eight-section experiment configuration. This
complexity reflects their different architectures since Optuna runs
as a simple Python library while Katib operates as a Kubernetes
service.

Both tools support similar optimization algorithms, including
Bayesian optimization, random search, and evolutionary strate-
gies. They also provide pruning to stop unpromising trials early.
Moreover, both tools offer visualisation. Katib includes the parallel
coordinates plot directly in the Kubeflow dashboard. In comparison,
Optuna requires installing the separate Optuna-dashboard package
but offers similar visualizations to Katib once configured.

Integrating Optuna with MLflow caused parameter conflicts that
required using an additional package, provided by Optuna itself, to
resolve them. On the other hand, Katib integrates seamlessly with
MLMD and Kubeflow Pipelines since they were designed together.
This demonstrates the benefit of using a tool within its intended
ecosystem.

The tools’ parallelization approaches differ fundamentally. Katib
spawns isolated Kubernetes pods for each trial, providing complete
resource isolation. Optuna offers multi-thread, multi-process, and
multi-node modes, but trials share the same environment unless
explicitly configured otherwise. For teams already on Kubernetes,
Katib’s pod-based isolation provides better resource management.
For single-machine deployments, Optuna’s threading model uses re-
sources more efficiently. These differences in resource management
further showcase Kubeflow’s multi-machine pod cluster priority.

Teams should choose an HPO tool based on their existing infras-
tructure. If already using Kubeflow or a Kubernetes-based architec-
ture, Katib’s UI-based configuration and automatic parallelization
justify its complexity. For standalone projects or teams without Ku-
bernetes expertise, Optuna provides a better developer experience
with lower operational overhead. Neither tool is clearly superior
for HPO, as they serve different deployment scenarios and involve
distinct trade-offs.

4.1.8 Model Serving

Model serving tools deploy trained models as production services
that process incoming data and return predictions. In the IDEKO
pipeline, these tools expose the anomaly detection model through

REST APIs, allowing CNC machines to submit sensor data and re-
ceive classifications indicating whether they are operating normally
or showing signs of electrical or mechanical failures that require
maintenance.

MLflow Serving

Table 14 shows the evaluation of MLflow Serving for deploying
IDEKO anomaly detection models.

Table 14: MLflow Serving’s systematic test plan and results
for IDEKO model deployment

Test Step Result

1 Install MLflow
Serving
dependencies

MLflow Serving comes bundled with MLflow
and requires no separate installation. How-
ever, it depends on the virtualenv package
to create isolated Python environments for
each served model.

2 Prepare a model
for deployment

Models already registered through MLflow
Models were immediately available for serv-
ing, with all dependencies and signatures cap-
tured during the initial model logging process,
as described in the MLflow Models evalua-
tion.

3 Deploy a trained
model using
MLflow Serving

Deployment succeeded with a single
command that automatically created a
virtualenv, installed all captured depen-
dencies, and started a REST server exposing
prediction endpoints on the specified port.

4 Test the prediction
endpoint with
time series data

All model architectures that accept three-
dimensional tensor inputs, where the dimen-
sions represent batch size, time steps, and
sensor features, worked seamlessly without
custom preprocessing. MLflow’s auto logging
feature automatically captured the correct in-
put format specification during training.

5 Integrate MLflow
Serving into the
Airflow pipeline

The Airflow DAG successfully automated the
complete deployment workflow, including se-
lecting the best-performing model from HPO
experiments, promoting it to production sta-
tus in the model registry, starting the serving
process with health monitoring, and ensuring
graceful shutdown. This automation process
required custom orchestration logic to coor-
dinate these steps.

6 Test batch
predictions

Batch predictions functioned correctly when
sending multiple samples in a single request
using the standard MLflow format with "in-
stances" as the JSON key, processing all se-
quences simultaneously and returning proba-
bility distributions for each sample.

MLflow Serving exemplifies how thoughtful design can dramat-
ically simplify model deployment. Unlike KServe’s complex con-
tainerization requirements and strict output formatting, MLflow
Serving worked almost immediately with minimal configuration.
Its single-command deployment automatically handled all com-
plexity, from creating an isolated Python environment to installing

16

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

the exact dependencies captured during training and exposing a
well-documented REST API. This seamless experience stems from
MLflow’s integrated ecosystem where Models, Tracking, and Serv-
ing components share metadata and eliminate the need for manual
configuration.

The automatic dependency management proved impressive dur-
ing evaluation. When models were saved with MLflow Models and
auto log was enabled, the framework captured the complete envi-
ronment specification including the Python version and any library
dependencies. By default, MLflow recreated this environment in a
virtualenv during serving to ensure consistency between training
and serving environments.

For the IDEKO time series use case, MLflow’s handling of com-
plex input parameter shapes was remarkably straightforward. The
LSTM models expecting 3D tensors, where the dimensions repre-
sent batch size, time steps, and sensor features, worked without
any custom preprocessing or wrapper code. MLflow’s auto logging
functionality captured the tensor signature during training, whilst
the serving layer correctly parsed nested JSON arrays into the re-
quired format. This automatic handling of sequence data contrasted
sharply with KServe’s requirement for custom preprocessing logic.

Model deployment revealed limitations in production opera-
tions. MLflow Serving runs as a simple foreground process using
FastAPI [40], providing no built-in process management, health
monitoring, or automatic restarts. The single-threaded FastAPI
server also lacks horizontal scaling capabilities, making it suitable
for development and low-traffic scenarios but is insufficient for
high-throughput production deployments. MLflow’s documenta-
tion acknowledges these scalability limitations and provides a clear
upgrade path. For production deployments requiring autoscaling,
load balancing, or GPU acceleration, MLflow Serving can deploy to
various targets, including SageMaker, AzureML, Databricks, and
Kubernetes frameworks, like Seldon Core or KServe. Therefore, the
models remain unchanged, with only the deployment target differ-
ing. This flexibility allows teams to start with simple local serving
during development and seamlessly transition to production-grade
infrastructure without modifying the model artifacts. MLflow’s
documentation highlights the benefits of integrating with Seldon
Core’s MLServer for Kubernetes deployments, as it provides asyn-
chronous request handling through worker pools. This enables the
server to accept new requests while processing intensive inference
workloads. When deployed through Seldon Core or KServe, MLflow
Serving gain access to advanced features, such as auto scaling, A/B
testing, and multi-model serving, while maintaining the simple
model packaging benefits [26].

Main Findings: MLflow Serving abstracts deployment
complexity through a consistent interface that scales from
local development to production infrastructure without
changing model artifacts. Teams can start with simple serv-
ing and transition to enterprise platforms as their require-
ments grow.

KServe

Table 15 presents the challenging evaluation of KServe for Kubernetes-
native model serving.

Table 15: KServe’s systematic test plan and results for IDEKO
model serving

Test Step Result

1 KServe
installation

KServe came pre-installed with Charmed
Kubeflow, requiring no additional setup or
configuration. However, it was notably ab-
sent from the DeployKF distribution, limiting
deployment options. The serving framework
was immediately available through the Ku-
bernetes cluster in Charmed Kubeflow.

2 Deploy IDEKO’s
Keras model using
KServe

Initial deployment succeeded using a config-
uration file that defined how KServe should
serve the model by specifying the model lo-
cation, runtime, and resource requirements.
The TensorFlow serving runtime automati-
cally handled the SavedModel format, suc-
cessfully exposing the model on a REST end-
point accessible through the cluster.

3 Test inference
endpoint with
sample sensor
data

Testingwith 20 sensor readings from IDEKO’s
𝑓3 signal produced incorrect classifications.
An investigation revealed the model re-
quired approximately 18,000 timesteps for
accurate anomaly detection, far exceeding
JSON payload size limits. This forced us
to create a custom predictor class inherit-
ing from KServe’s base implementation, in
which we defined three required methods:
preprocess() to parse CSV files instead of
JSON, load_model() to initialize the model,
and predict() to perform inference. After
deploying this custom predictor, the model
successfully processed the full time series
data and produced accurate classifications
matching our local tests.

4 Integrate KServe
deployment
within Kubeflow
Pipelines

KServe components do not support standard
artifact input/outputs like other Kubeflow
tools in the pipeline, requiring us to access
Kubeflow’s MinIO storage directly using spe-
cific path formats. We spent three days de-
bugging "model not found" errors and creden-
tial mounting issues. The error logs provided
misleading information that hindered trou-
bleshooting. The artifact paths displayed in
the Kubeflow UI did not match the storage
locations KServe expected. This fundamental
mismatch made pipeline integration impos-
sible without a deep understanding of both
systems’ internal architecture, forcing us to
abandon the integration.

KServe demonstrates both the promises and limitations of Kubernetes-
native model serving. The framework’s inclusion in Charmed Kube-
flow eliminated installation complexity, and its automatic handling

17

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

of TensorFlow SavedModel format made initial deployment remark-
ably simple.

However, this simplicitymasked critical assumptions aboutmodel
behaviour. The discovery that predictions required a much larger
timestep context exposed a fundamentalmismatch betweenKServe’s
REST API design and time series models. JSON payload size limi-
tations forced the implementation of CSV file upload support by
inheriting from KServe’s base implementation with custom prepro-
cessing logic to parse and preprocess the data.

The Kubeflow Pipeline integration failure revealed a fundamen-
tal architectural incompatibility. Unlike other Kubeflow compo-
nents that pass artifacts through the pipeline’s input/output sys-
tem, KServe requires direct access to MinIO storage, which stores
the model. This difference in artifact handling caused multiple
implementation headaches. The outputted model by the training
component could not be found despite being successfully stored,
and the path even appeared in the Kubeflow dashboard. However,
that same path did not work in the KServe component. Even after
following multiple forum threads of similar use cases, where it
was well known that these paths differed, the path could not be
accessed. Furthermore, there were credential issues when accessing
the local MinIO pod, similar to what we had encountered in the
Kubeflow Pipeline (KFP) implementation with DVC, where error
logs provided misleading or incomplete information. The discon-
nect between KServe’s storage expectations and Kubeflow’s artifact
abstraction made integration practically impossible without exten-
sive knowledge of the systems’ internals, Kubernetes and Charmed
Kubeflow’s credential setup.

Standalone KServe deployment works reliably for models with
standard input sizes, but trying to integrate it within Kubeflow
Pipelines means wrestling with undocumented storage patterns
and credential management nightmares. The framework’s advanced
features, like autoscaling and canary deployments, are impressive.
However, for smaller teams deploying a single anomaly detection
model, the overhead is hard to justify when a simple Flask API
would do the job. Components that promise enterprise-grade capa-
bilities end up demanding enterprise-grade expertise and resources
that smaller deployments might not be able to justify.

Main Findings: KServe delivers enterprise features like
autoscaling and canary deployments, but artifact path mis-
matches with Kubeflow Pipelines created insurmountable
integration challenges. The framework assumes substantial
Kubernetes knowledge.

MLflow Serving vs KServe

The contrast between MLflow Serving and KServe reveals fun-
damentally different approaches to model deployment. MLflow
Serving prioritizes developer experience with its single-command
deployment that automatically creates an isolated virtualenv, in-
stalls dependencies, and starts a REST server. This simplicity enables
immediate testing and evaluation without wrestling with infras-
tructure concerns. In contrast, KServe arrives pre-integrated with
Kubernetes, providing production-grade deployment capabilities

from the start, but this power comes with significant complexity
that manifests in multiple ways.

Deployment requirements differ dramatically between the tools.
MLflow Serving leverages the metadata already captured during
model training, requiring only a model URI to serve predictions.
KServe demands implementation of a custom Python class with
multiple methods for model loading, preprocessing, prediction, and
postprocessing, even for standard model formats. This additional
code layer adds development overhead but provides fine-grained
control over the serving pipeline.

The integration challenges with Kubeflow Pipelines exposed a
critical architectural mismatch in KServe. While other Kubeflow
components seamlessly pass artifacts through the pipeline’s in-
put/output system, KServe requires direct MinIO storage access
with proper credentials. The artifact URLs displayed in the Kubeflow
UI do not match the paths KServe expects, creating a frustrating
debugging experience with misleading error messages. This dis-
connect made pipeline integration practically impossible without
deep knowledge of Kubeflow’s storage architecture. Additionally,
the promised integration between KServe and Kubeflow Model
Registry for versioning management could not be tested, as neither
DeployKF nor Charmed Kubeflow distributions include the Model
Registry component.

Despite these integration challenges, KServe delivers enterprise-
grade capabilities that MLflow Serving lacks. Features like autoscal-
ing, canary deployments, traffic splitting, and multi-model serving
come built-in with KServe’s Kubernetes-native architecture. For
organizations already invested in Kubernetes infrastructure which
require these advanced features, KServe’s complexity may be justi-
fied. However, for teams seeking straightforwardmodel deployment
with minimal operational overhead, MLflow Serving’s simplicity
and seamless integration with the broader MLflow ecosystem make
it the more practical choice.

4.2 RQ2: General Stack Evaluation
RQ2 evaluates both stacks end to end in the IDEKO pipeline: in-
stallation, integration, observability, hyperparameter search, and
serving. This research question explicitly does not seek to compare
the MLflow and Kubeflow stacks against each other, but rather
examines how individual tools from each ecosystem behave when
integrated in realistic production pipelines, documenting their oper-
ational characteristics, integration complexities, and the overhead
and failure modes that emerge in practical deployments.

4.2.1 MLflow Stack

Figure 2 illustrates the architecture of the MLflow-centric stack,
which implements a modular pipeline orchestrated through Apache
Airflow’s Python-based Directed Acyclic Graphs (DAGs). The ar-
rows in the architecture figure indicate data flow with labels show-
ing data type. Components marked «airflowTask» represent DAG
tasks executed by the Airflow scheduler. Components marked «ser-
vice» are external services and storage systems. MLflow Tracking
Server provides centralized experiment tracking and model registry.
The pipeline initiates with DVC executing as an Airflow command
task, which retrieves versioned sensor data from a local MinIO

18

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Table 16: Evaluation matrix – MLflow Stack

Criterion D
VC

FE
A
ST

A
pa
ch
e

A
ir
flo

w

O
pt
un

a

M
Lfl

ow
Tr
ac
ki
ng

M
Lfl

ow
M
od
el
s

M
Lfl

ow
D
at
as
et
s

Usability

Setup & Installation Simplicity High High Medium High High High High

Configuration Simplicity Medium Medium Low Medium High High High

Ease of Use Medium Medium Medium High High High High

Documentation Support High High Medium Medium High High High

Functionality
Functional Appropriateness High High High High High High Medium

Functional Completeness Medium Medium High High High High Medium

Reliability Medium High High High High High Medium

Flexibility

Platform Support Medium Medium High High High High High

Integration Readiness High High High High High High Medium

Ease of Integration High Medium Medium High High High Medium

Modularity Medium Low Medium High High Low Low

Vitality
Community Support & Adoption High Medium High High High High High

Maturity High Medium High Medium High High High

Active Development & Maintenance High High High High High High High

Table 17: Evaluation matrix – Kubeflow Stack

Criterion La
ke
FS

FE
A
ST

K
ub
efl

ow
Pi
pe
lin

es

Ka
tib

M
L

M
et
ad
at
a

K
Se
rv
e

K
ub
efl

ow
M
od
el
Re

gi
st
ry

Usability

Setup & Installation Simplicity High High Medium Medium Medium Medium Medium

Configuration Simplicity Medium Medium Low Medium Medium Medium Medium

Ease of Use Medium Medium Medium Medium Medium Medium Medium

Documentation Support High High Medium Medium Medium Medium Medium

Functionality
Functional Appropriateness High High High High Medium High Medium

Functional Completeness Medium Medium High High Medium High Medium

Reliability Medium High High High Medium High Medium

Flexibility

Platform Support High Medium High High High High High

Integration Readiness High High High High Medium High Medium

Ease of Integration High Medium Medium High Medium High Medium

Modularity Medium Low High High Medium Medium Medium

Vitality
Community Support & Adoption Medium Medium High High Medium High Medium

Maturity Medium Medium Medium Medium Medium Medium Low

Active Development & Maintenance High High High High Medium High Medium

object storage server hosting the IDEKO dataset and pulls CSV files
containing high-frequency sensor readings.

Following data retrieval, the Process Features component exe-
cutes a Python operator within the Airflow DAG, performing the
required preprocessing on the raw sensor data. It then computes fea-
tures such as rolling averages and statistical aggregates, and saves
the processed data to local Parquet files. The columnar Parquet
format was selected as it is a requirement for Feast. However, it also

provides superior compression and query performance compared
to CSV. The Feast feature store subsequently reads from these Par-
quet files, registering feature definitions and maintaining schema
versioning to prevent training-serving skew. This unidirectional
data flow from processing to storage to feature registration ensures
data consistency across the pipeline.

The training phase demonstrates tight integration between mul-
tiple MLflow components and the Optuna HPO framework. The

19

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

Figure 2: MLflow-centric Stack Architecture

IDEKO training script is executed as another Airflow task and
leverages Optuna to systematically explore hyperparameter spaces,
including learning rates, batch sizes, and network architectures.
Through MLflow’s auto logging capabilities for Keras, the training
process automatically captures comprehensive metadata without
requiring explicit logging code. Optuna saves hyperparameter con-
figurations and optimization results directly to the MLflow Track-
ing Server, while the training script logs metrics, parameters, and
model artifacts. This convergence of tracking data into a single
server simplifies experiment management and comparison.

The MLflow Tracking Server serves as the central metadata
repository, hosting the three MLflow libraries. MLflow Datasets
maintains the lineage between training runs and their input data
versions. MLflow Tracking stores all experimental parameters, met-
rics, and system information, providing comprehensive audit trails
for each training run. MLflow Models manages the packaged model
artifacts along with their dependencies and environment specifi-
cations. This unified architecture eliminates the need for separate
installations or complex integration code, as all components operate
within the same tracking server infrastructure.

The final Airflow task deploys the model through MLflow Serv-
ing. A single command retrieves the specified model version from
MLflow Models and instantiates a FastAPI server for inference. The
serving command constructs an isolated throwaway Python virtual
environment and installs any required dependencies. The deployed
model exposes standard endpoints for prediction requests.

4.2.2 Kubeflow Stack

Figure 3 presents the Kubeflow-centric stack architecture. Arrows
indicate data flow with labels showing what data is being trans-
ferred. Componentsmarked as «kfpComponent» represent Kubeflow
pipeline components which are the steps executed sequentially in
the pipeline. Components marked «service» are external services in-
tegrated with the pipeline. The Kubeflow Pipeline orchestrates the
workflow as a series of containerized components, each executing
in isolated Kubernetes pods with well-defined input and output ar-
tifacts. The pipeline begins with the LakeFS Pull component, which

retrieves the versioned IDEKO dataset from the LakeFS service.
LakeFS provides Git-like semantics for object storage, managing
dataset versions in its integrated MinIO backend. The retrieved
dataset is saved as a Kubeflow artifact and passed through Kube-
flow’s input/output system to the subsequent components.

Parallel to data retrieval, the Git Clone component fetches train-
ing code from the git repository, similarly packaging it as an artifact
for consumption by the training component. Each component op-
erates without shared filesystem access, receiving only the artifacts
explicitly declared in its interface specification. This isolation pre-
vents hidden dependencies and ensures that pipeline execution
remains deterministic across different environments and execution
times.

The Train Model component receives both the dataset and code
artifacts through Kubeflow’s artifact passing mechanism, executing
the IDEKO training script. The component uses the hyperparam-
eters that were identified beforehand by Katib. Each Katib experi-
ment runs in complete isolation, preventing interference between
trials while enabling efficient resource utilization across the cluster.
The optimal hyperparameters discovered by Katib are used in the
model training phase, with all metadata captured in the MLMD
store. MLMD serves as the central metadata repository, tracking
all pipeline executions, artifact lineage, and experimental results in
a MySQL backend. Kubeflow Artifacts manages the intermediate
outputs between pipeline components, storing them in a MinIO
object storage.

The deployment phase utilizes KServe for model serving, con-
suming the trained model artifact directly from the Kubeflow Arti-
facts store. KServe provides Kubernetes-native serving capabilities
including automatic scaling, canary deployments, and traffic split-
ting, though our evaluation revealed integration challenges with
the artifact passing system. Notably, our implementation could not
utilize the Kubeflow Model Registry, as neither the DeployKF nor
the Charmed Kubeflow distribution included this component, forc-
ing direct use of the Kubeflow Artifact store without the additional
features that a model registry would provide, such as simplified
versioning.

20

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Figure 3: Kubeflow-centric stack Architecture

5 Discussion
This section analyses the broader trends of our findings, examining
tool capabilities, practical usability and documentation quality.

5.1 Answering RQ1
Our evaluation of individual MLOps tools showed a clear trade-off
between powerful capabilities and operational complexity. Across
all component categories, the tools in the MLflow ecosystem con-
sistently achieved higher usability scores because of their straight-
forward installation, intuitive interfaces, and comprehensive doc-
umentation. Conversely, tools in the Kubeflow ecosystem offered
superior functionality specifically for distributed, large-scale work-
loads through features like pod isolation and fine-grained resource
control. However, these enterprise-scale capabilities came at sub-
stantial usability costs as the Kubeflow tools required significantly
more configuration, deeper technical knowledge, and longer setup
times than their MLflow counterparts.

5.2 Answering RQ2
The complete comparison of the MLflow and Kubeflow-centric
stacks revealed that they are not competing alternatives but fun-
damentally different approaches to building MLOps pipelines. Our
MLflow stack combined best-of-breed tools (MLflow for tracking,
DVC for versioning, Airflow for orchestration, Optuna for HPO)
that excel individually and integrate through standard interfaces.
In contrast, the Kubeflow stack provided an integrated platform
where components like Kubeflow Pipelines, Katib, and MLMD were
designed to work together from the outset. The MLflow stack’s
modular approach allowed teams to start with minimal infrastruc-
ture and swap components as needed, while the Kubeflow stack’s
integrated nature demanded upfront investment in the Kubernetes
ecosystem but provided unified management and consistent ar-
chitectural patterns. Our evaluation found that these stacks serve

different organizational contexts: the MLflow stack suits teams
that value flexibility and gradual adoption, whereas the Kubeflow
stack targets organizations already committed to Kubernetes in-
frastructure seeking a unified platform. Our findings show that
the choice of stack depends on whether teams prioritize accessi-
bility and modularity, as in the MLflow stack, or integration and
enterprise capabilities, as in the Kubeflow stack.

5.3 Complexity Cost of Enterprise Features
Our evaluation reveals a clear trade-off between enterprise features
and usability. While Kubeflow provides multi-tenancy, distributed
execution, and access control, these features require substantial op-
erational overhead that teamsmust weigh against their actual needs.
This platform requires approximately 25 services to be deployed
and managed. On the positive side, many of these services, such as
orchestration (Kubeflow Pipelines) and HPO (Katib), are built-in,
whereas the MLflow stack requires them as separate installations
(Apache Airflow and Optuna). When counting all components in
both stacks, the complexity gap shrinks, though Kubeflow’s Kuber-
netes base still requires more operational expertise for straightfor-
ward tasks. This was evident in our RQ1 evaluation (Section3.1) as
evidenced by the need to understand Kubernetes concepts, manage
cross-namespace permissions, and debug container networking
issues. For instance, using git-cloned code in downstream pipeline
components required explicit artifact passing between isolated con-
tainers. In contrast, the MLflow stack pipeline needed only standard
Python imports. MLflow’s design decisions prove sensible for or-
ganizations operating at scale, where isolation and reproducibility
justify the added complexity. However, for teams focused on rapid
experimentation and model development, this overhead represents
time diverted from actual ML work.

21

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

The debugging complexity increased substantially when transi-
tioning from local Python processes in the MLFlow stack to con-
tainerized Kubernetes pods in the Kubeflow stack. Simple print de-
bugging transformed into kubectl log investigations, and straight-
forward stack traces became distributed across multiple pod logs,
requiring timestamp correlation. Kubeflow’s MySQL pod’s unex-
plained 16GBmemory consumption, despite configuration attempts
to limit it, exemplifies how infrastructure problems can derail ML
work. While teams with Kubernetes expertise might resolve such
issues more efficiently, the fundamental challenge remains that data
scientists must troubleshoot infrastructure rather than focus on
model development. Organizations such as Spotify have demon-
strated Kubeflow’s value at scale [35], as referenced in our SLR [2].
However, the complexity investment required to master Kubernetes,
manage distributed systems and debug containerized workflows,
only yields returns when scale genuinely demands such capabilities.

On the other hand, the MLflow architecture provides an evo-
lutionary path that aligns with team growth patterns. Teams can
begin with a simple FastAPI deployment using a single command,
then package models for Kubernetes deployment as requirements
grow, and eventually adopt advanced serving platforms such as
Seldon Core or KServe itself, all while maintaining the sameMLflow
model format. This approach enables teams to defer complexity
until scale justifies it, rather than adopting enterprise infrastruc-
ture prematurely. Teams already operating at scale with established
Kubernetes expertise may reasonably choose Kubeflow from the
outset. Conversely, teams uncertain about their eventual scale re-
quirements benefit from MLflow’s gradual complexity curve. The
ability to start with minimal infrastructure and then evolve as
needed prevents premature optimization while preserving future
architectural flexibility.

Both platforms offer paths to managed services, though with
different trajectories. Kubeflow distributions exist for major cloud
providers (Azure, Google Kubernetes Engine), as documented in our
evaluation (Section 4.1.3.1). Similarly, MLflow users can transition
to Databricks’ managed platform or be deployed to services like
SageMaker. The key distinction lies in the migration path: MLflow
allows teams to begin with minimal infrastructure and gradually
adopt managed services, while Kubeflow typically requires upfront
Kubernetes configuration and investment.

5.4 Documentation Quality
The documentation strategies employed by different tools revealed
their underlying priorities and target audiences. MLflow’s docu-
mentation begins with a five-minute quickstart guide that produces
working code immediately, followed by progressive tutorials of
advanced features and other modules. This approach, combined
with an AI-powered documentation chatbot, demonstrates a clear
focus on the developer’s experience. Our evaluation found that
MLflow offered the quickest path from installation to comprehen-
sive experiment tracking, automatic metric graphing, and complete
data lineage visualization.

In contrast, Kubeflow’s documentation was fragmented across
multiple sources.While themain project documentation is adequate
and covers core concepts well, the distribution-specific details re-
side on separate sites, and individual components maintain their

own repositories. Our evaluation revealed that some commands,
namespace configurations, and service names differed between the
official documentation and Charmed Kubeflow’s actual deployment.
Even MLMD, a core Kubeflow component, presented dead links in
its documentation when attempting to access its quickstart guide.
This fragmentation reflects the downsides of Kubeflow’s distributor-
oriented approach, where different organizations maintain their
own distributions.

Notably, corporate backing appears to correlate with higher
documentation quality. MLflow, with Databricks’ resources, pro-
vides the most polished experience from documentation through
implementation. On the other hand, Kubeflow reflects Google’s
influence in core components but becomes fragmented in areas
maintained by the community. Although Apache Airflow is mostly
community-driven, it still provides comprehensive documentation
for all configuration options and operators. However, it lacks well-
organized tutorials that guide users through common workflows.
Tools featuring clear, linear documentation such as MLflow consis-
tently scored higher on our usability metrics.

5.5 Version Compatibility and Ecosystem
cohesion

Version compatibility is a problem, especially with fragmented
stacks like our MLflow stack. During our evaluation of Airflow,
we ran into problems because its pinned Feast version was out-
dated without proper Python SDK support, necessitating manual
overrides of the constraints file. This issue highlights a key dif-
ference in the two stacks’ architecture: the MLflow stack needs to
carefully manage dependencies between separate tools, while Kube-
flow’s integrated suite of first-party tools ensures that its parts work
together without having to worry about third-party integration.
Kubeflow remains modular, allowing the integration of external
tools when needed. DeployKF demonstrates this flexibility by pre-
integrating MLflow for experiment tracking instead of relying only
on MLMD. As a result, MLflow offers a better user experience.
However, Kubeflow has a unique advantage when teams use its
built-in parts: tools like Katib, MLMD, and KServe all follow the
same Kubernetes-native philosophy and architectural assumptions.
This architectural consistency is a key benefit for teams that are
ready to fully adopt the Kubeflow ecosystem. The platform’s mod-
ularity also means that teams can still use their favourite external
tools when the built-in option does not meet their needs.

6 Threats to Validity
In this section, we follow the threat classification schemes for ex-
periment validity described by Ampatzoglou et al. [41] and outline
the threats that may affect the validity of our research.

6.1 External Validity
External validity concerns the generalizability of our findings be-
yond the specific context of our evaluation. Our results come from a
single use case: the IDEKO anomaly detection pipeline. While based
on a real industrial scenario, this pipeline addresses only a time-
series classification workload. Other ML domains, such as computer
vision or NLP, could expose different strengths and weaknesses in
the tools we tested.

22

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Additionally, we assessed only batch processing scenarios through
the IDEKO pipeline, excluding streaming and real-time inference
workloads. Our setup also ran everything on a single machine, so
it did not fully test distributed computing capabilities, particularly
for Kubeflow’s Kubernetes-native design intended for multi-node
clusters. Kubeflow is built to handle large-scale workloads across
multiple nodes, but we did not evaluate it under those conditions.
While this means we cannot comment on how the tools behave in a
distributed setting, Kubernetes is a mature and widely used system
with a long track record of reliably running large workloads [42].
This reduces the likelihood that problems would stem from the
orchestration layer itself, although tool-specific behaviour under
multi-node deployments remains untested.

6.2 Internal Validity
Internal validity examines whether the study’s design and execution
provide a reliable basis for linking causes to effects. In our evalu-
ation, the choice of Kubeflow distribution had a minor impact on
our findings. As documented in Section 4.1.3.1, distribution-specific
issues, such as the MySQL memory consumption problem, are
not inherent to Kubeflow itself but stem from Canonical’s packag-
ing decisions. Other distributions, like DeployKF or cloud-specific
versions, may yield different scores, limiting how much we can
generalize our findings beyond the specific distribution tested. We
explicitly document which issues were distribution-specific versus
platform-inherent to help readers understand which findings apply
broadly to Kubeflow versus only to Charmed Kubeflow.

We also did not evaluate security features, multi-user authenti-
cation, or role-based access control (RBAC) capabilities, which are
critical for multi-member organizations. While both stacks offer
these enterprise features, their complexity and configuration re-
quirements could substantially impact the usability and flexibility
scores we assigned. We explicitly scope our evaluation to devel-
opment workflows and clearly indicate that production security
assessments require separate evaluation.

Furthermore, some tools were set up with vendor-provided quick
start examples instead of the recommended full-scale production
deployment, which may have minimized their perceived setup com-
plexity. For instance, Airflow’s "standalone" command succeeds in
minutes, but production deployment requires orchestrating sep-
arate database, webserver, scheduler, worker processes and mon-
itoring infrastructure, transforming a simple setup into a much
more extensive engineering effort. This gap between development
convenience and production requirements represents a threat to
the validity of our scores when applied to production environments.
However, the requirement differences between quick start examples
and full production setups are documented for every tool.

The rapid evolution of the MLOps ecosystem during our study
period presents another threat to internal validity. MLflow under-
went a major version update from 2.11 to 3.2, introducing breaking
changes including module removals and API modifications. Simi-
larly, DeployKF announced upcoming support for the Model Reg-
istry and KServe during our evaluation, demonstrating ongoing
divergence in Kubeflow distributions’ component selections. These
continuous changes mean our findings reflect specific tool versions
that may already exhibit different behaviour in newer releases. To

mitigate this, we report all tool versions and evaluation dates in
the Appendix.

A learning curve effect also influenced our evaluation process.
Debugging patterns and Kubernetes knowledge accumulated from
early frustrations proved valuable when assessing subsequent tools,
potentially creating an order effect where later-evaluated tools
benefited from our increased expertise. This temporal bias could
systematically advantage tools evaluated later in our study, partic-
ularly for usability assessments.

6.3 Construct Validity
Construct validity concerns how well our measures align with theo-
retical concepts. Our evaluation rubric (Table 2) applies qualitative
Low/Moderate/High ratings based on subjective assessment from a
single researcher. Without multiple evaluators to cross-validate rat-
ings, individual biases and preferences may systematically influence
scores. This is compounded by our limited Kubernetes expertise
since an experienced Kubernetes user might rate the same tasks as
easier, whereas a data scientist without DevOps background might
find them even more challenging. While the pilot study helped
calibrate initial judgments, it could not address these fundamental
limitations in evaluator expertise and single-researcher bias.

6.4 Conclusion Validity
Conclusion validity focuses on the accuracy of the deductions gen-
erated from our data analysis. The following two tools could not
be fully evaluated due to integration failures: KServe within Kube-
flow Pipelines and the Kubeflow Model Registry. This prevented
complete feature comparison and may unfairly disadvantage the
Kubeflow stack, as these integration issues might be resolvable
with additional expertise or alternative configuration approaches,
which were not explored within our time constraints. We explic-
itly identify which components could not be evaluated rather than
generalizing limitations to the entire stack.

To support the verifiability and reproducibility of our findings,
we provide a comprehensive replication [43] package including
all evaluation scripts, configuration files, and detailed field notes.
This package contains the exact tool versions used, step-by-step
installation instructions, and the complete IDEKO pipeline imple-
mentation for both stacks. While hardware differences and evolving
tool versions may produce variations in specific timings or scores,
the availability of our implementation artifacts enables independent
verification of our core findings and methodology.

7 Related Work
This section positions our findings within the context of existing
MLOps evaluation studies and highlights how our work aligns with
previous research.

In 2022, Köhler carried out an in-depth evaluation of open-source
Kubernetes-native MLOps platforms [44]. The study compared
Kubeflow, Pachyderm, and Polyaxon in terms of performance, vital-
ity, usability, and functionality. While not identical, these categories
overlap heavily with our own four evaluation dimensions of us-
ability, functionality, flexibility, and vitality (Section 3), which we
apply at both tool and stack levels. Köhler’s conclusion on the

23

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

usability of Kubeflow was very clear: even a simple model deploy-
ment workflow demanded a high level of technical expertise. This
aligns closely with our own findings, as even getting basic tasks to
run reliably required substantial Kubernetes expertise. Köhler also
reported that Kubeflow’s documentation was inconsistent and in
parts outdated, which aligns with our experience during the MLMD
integration, where the official documentation had dead links. We
also encountered deployment-level issues that mirror those in Köh-
ler’s study, such as the KServe directory error, which stalled their
model-serving tests and prevented us from integrating KServe with
Kubeflow pipelines [44].

Dixit et al. [45] examined the deployment of a deep learning
model using MLflow on a Kubernetes cluster. In line with the re-
sults of our SLR [2], they identified MLflow, Kubeflow, and DVC as
the most widely adopted tools. They chose MLflow over Kubeflow
for their study since MLflow’s tracking and management capabili-
ties are more approachable, its installation process is lighter, and
the interface is cleaner with documentation that is easier to follow,
which aligns with our findings. They also pointed out that MLflow
integrates well with a wide range of tools and platforms, making it
adaptable to varied environments, whereas Kubeflow’s integrations
are tightly bound to Kubernetes. In their study, Dixit et al. claimed
that "MLflow is an open-source tool, whereas Kubeflow may re-
quire the use of paid resources such as Google Cloud Platform" [45].
While we agree with their characterisation of MLflow’s interoper-
ability, we diverge on their claim about Kubeflow. Our experience
indicates that this statement is misleading, as both Kubeflow and
MLflow are fully open-source and can be deployed entirely on lo-
cal infrastructure. In both our study and that of Dixit et al., cost
becomes a factor only when choosing a managed service, which
applies equally to both platforms [45].

This studymight give the impression that Kubeflow’s Kubernetes-
native architecture is necessary for production-scale deployments,
while MLflow suits only smaller initiatives. However, Chen et al.
[46] provide compelling evidence to the contrary with their anal-
ysis of MLflow deployments in their organization, managing mil-
lions of models through the MLflow Model Registry and producing
hundreds of thousands of models per deployment. The way they
accomplish this scale is especially interesting, as instead of using
intricate container orchestration like Kubeflow does, they utilise
MLflow’s modular architecture, which enables teams to begin with
a basic infrastructure and expand it as needed, as we discussed
earlier (Table 14). This finding reinforces our observation that the
choice between MLflow and Kubeflow is not fundamentally about
scalability limits, but rather about the team’s current expertise, De-
vOps capabilities, and whether they are already operating within
the Kubernetes ecosystem [46].

8 Conclusion
This thesis addressed a critical gap in MLOps literature by evaluat-
ing the actual implementation experience of popular MLOps tools
rather than just comparing their features. Organizations deploying
ML models face overwhelming tool choices with little practical
guidance on integration complexity and operational overhead. We
implemented the IDEKO anomaly detection pipeline using the most
popular MLOps tools identified in our SLR [2], organizing them into

two representative stacks, one MLflow-centric and one Kubeflow-
centric, to test realistic integration scenarios.

Based on this implementation, our evaluation revealed a con-
sistent pattern in which powerful capabilities come at the cost of
operational complexity. Tools with simpler architectural philoso-
phies, like MLflow Tracking, DVC, and Optuna, achieved higher
usability scores due to their straightforward installation and intu-
itive interfaces. Meanwhile, Kubernetes-native tools, such as Kube-
flow Pipelines, Katib, and KServe, offered superior functionality
specifically for distributed and large-scale workloads, including
pod isolation and multi-node execution, but demanded substantial
Kubernetes expertise. However, these tools also brought significant
operational challenges, such as KServe’s artifact path incompat-
ibilities, MLMD’s lack of visualization, and Katib’s strict output
requirements. Most strikingly, functionally equivalent tools from
the two stacks showed vastly different learning curves, as seen
with Optuna from the MLflow stack, which could be configured
in minutes, compared to Katib from the Kubeflow stack, which
required containerization and complex UI forms. These insights
enable practitioners to anticipate operational challenges and select
tools based on their team’s actual capabilities rather than feature
lists.

Our evaluation suggests several directions for future research.
One possible avenue is to extend the approach beyond time-series
classification to other domains. Another is to deploy these stacks
on real multi-node Kubernetes clusters with distributed training
workloads, which would clarify whether Kubeflow’s operational
overhead delivers proportional value at scale. This would particu-
larly benefit organizations debating infrastructure investments. A
further direction involves evaluating enterprise features, including
security configurations, RBAC implementation, and multi-tenancy
setup, to assess the true effort required to achieve production-grade
deployments. Many teams underestimate the gap between func-
tional prototypes and secure, multi-user systems. Together, these
efforts would contribute to a deeper understanding of MLOps tool
selection and adoption patterns across diverse organizational con-
texts.

In conclusion, this thesis contributes to MLOps literature by mov-
ing beyond feature lists to evaluate tools in realistic implementation
scenarios. Our findings show that tool choice should not be guided
by feature list comparisons alone but by an honest assessment of a
team’s expertise, scalability requirements, and operational capacity.
By documenting the integration trade-offs of two representative
stacks, this study offers practical insights for both researchers and
practitioners navigating the rapidly evolving MLOps landscape.

References
[1] Thomas Davenport and Katie Malone. Deployment as a Critical Business Data

Science Discipline. Harvard Data Science Review, 3(1), December 2020. Publisher:
The MIT Press.

[2] Zakkarija Micallef. A systematic review of MLOps tools: Practices, challenges,
and lessons learned. Technical report, Zenodo, May 2025. https://doi.org/10.
5281/zenodo.15459745.

[3] Ideko. Research Center | IDEKO.
[4] Mohammad Zarour, Hamza Alzabut, and Khalid T. Al-Sarayreh. MLOps best prac-

tices, challenges and maturity models: A systematic literature review. Information
and Software Technology, 183:107733, July 2025.

[5] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Denni-
son. Hidden Technical Debt in Machine Learning Systems. In Advances in Neural

24

https://doi.org/10.5281/zenodo.15459745
https://doi.org/10.5281/zenodo.15459745

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Information Processing Systems, volume 28. Curran Associates, Inc., 2015.
[6] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. Machine Learn-

ing Operations (MLOps): Overview, Definition, and Architecture, May 2022.
arXiv:2205.02302 [cs].

[7] Óscar A. Méndez, Jorge Camargo, and Hector Florez. Machine Learning Op-
erations Applied to Development and Model Provisioning. In Hector Florez
and Hernán Astudillo, editors, Applied Informatics, volume 2236, pages 73–88.
Springer Nature Switzerland, Cham, 2025. Series Title: Communications in
Computer and Information Science.

[8] Vidushi Arora. Exploring real-world challenges in MLOps implementation: a
case study approach to design effective data pipelines. 2024.

[9] Dvc documentation. https://dvc.org/doc, 2025. Accessed 2025-05-01.
[10] lakefs documentation. https://docs.lakefs.io/, 2025. Accessed 2025-05-01.
[11] T Vishwambari and Sonali Agrawal. Integration of Open-Source Machine Learn-

ing Operations Tools into a Single Framework. In 2023 International Conference
on Computing, Communication, and Intelligent Systems (ICCCIS), pages 335–340,
November 2023.

[12] Feast documentation. https://docs.feast.dev/, 2025. Accessed 2025-05-01.
[13] Iago Águila Cifuentes. Design and Development of an MLOps Framework.

Master’s thesis, Universitat Politècnica de Catalunya, June 2023. Accepted: 2023-
10-25T10:32:47Z.

[14] Kubeflow pipelines documentation. https://www.kubeflow.org/docs/
components/pipelines/, 2025. Accessed 2025-05-01.

[15] Kubernetes. https://kubernetes.io/, 2025. Open-source container orchestration
platform.

[16] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019.

[17] Kanwarpartap Singh Gill, Vatsala Anand, Rahul Chauhan, Ruchira Rawat, and
Pao-Ann Hsiung. Utilization of Kubeflow for Deploying Machine Learning
Models Across Several Cloud Providers. In 2023 3rd International Conference on
Smart Generation Computing, Communication and Networking (SMART GENCON),
pages 1–7, December 2023.

[18] Katib: Kubernetes-native automated machine learning. https://www.kubeflow.
org/docs/components/katib/, 2025. Accessed 2025-05-01.

[19] MLflow Developers. Hyperparameter tuning with child runs.
https://mlflow.org/docs/latest/ml/traditional-ml/tutorials/hyperparameter-
tuning/notebooks/hyperparameter-tuning-with-child-runs/, 2025. Accessed:
2025-08-17.

[20] Giulio Mallardi, Fabio Calefato, Luigi Quaranta, and Filippo Lanubile. An MLOps
Approach for Deploying Machine Learning Models in Healthcare Systems. In
2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
pages 6832–6837. IEEE, 2024.

[21] Michal Bacigál. Design and Implementation of Machine Learning Operations.
February 2024. Accepted: 2024-02-09T23:53:17Z Publisher: České vysoké učení
technické v Praze. Vypočetní a informační centrum.

[22] Luca Scotton. Engineering framework for scalable machine learning operations.
2021.

[23] Mlflow documentation. https://mlflow.org/docs/latest/index.html, 2025. Accessed
2025-05-01.

[24] Ml metadata (mlmd) for tfx. https://www.tensorflow.org/tfx/guide/mlmd, 2025.
Accessed 2025-05-01.

[25] Kubeflow model registry (docs). https://www.kubeflow.org/docs/components/
model-registry/, 2025. Accessed 2025-05-01.

[26] Kserve documentation. https://kserve.github.io/website/, 2025. Accessed 2025-
05-01.

[27] Canonical Ltd. Charmed kubeflow documentation. https://charmed-kubeflow.io/
docs, 2025. Accessed: 2025-08-10.

[28] Per Runeson andMartin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164,
April 2009. Company: Springer Distributor: Springer Institution: Springer Label:
Springer Publisher: Springer US.

[29] ISO 25010.
[30] MinIO, Inc. MinIO: High Performance Object Storage, 2025. Accessed: 2025-08-14.
[31] Treeverse. lakeFS - Git-like Operations on Object Storage, 2025. Accessed:

2025-08-14.
[32] Ubuntu 22.04 lts. https://ubuntu.com/22-04, 2022. Long Term Support release of

the Ubuntu operating system.
[33] Microk8s. https://microk8s.io/, 2025. Lightweight, single-package Kubernetes

distribution by Canonical.
[34] Juju. https://juju.is/, 2025. Open-source orchestration engine by Canonical.
[35] Andres Felipe Varon Maya. The State of MLOps.
[36] deployKF Authors. deploykf documentation. https://www.deploykf.org/docs/,

2024. Accessed: 2025-08-10.
[37] Jukka Ruohonen and Qusai Ramadan. Snaps: Bloated and Outdated?, July 2025.

arXiv:2507.00786 [cs] version: 1.

[38] Google Research. Ml metadata (mlmd). https://github.com/google/ml-metadata,
2024. Accessed: 2025-08-18.

[39] TensorFlow Extended. Ml metadata. https://www.tensorflow.org/tfx/guide/mlmd,
2024. Accessed: 2025-08-18.

[40] Sebastián Ramírez. Fastapi.
[41] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and

Alexander Chatzigeorgiou. Identifying, categorizing and mitigating threats to
validity in software engineering secondary studies. Information and Software
Technology, 106:201–230, 2019.

[42] Shazibul Islam Shamim, Jonathan Alexander Gibson, Patrick Morrison, and
Akond Rahman. Benefits, challenges, and research topics: A multi-vocal lit-
erature review of kubernetes, 2022.

[43] Zakkarija Micallef. Replication package for thesis: Comparative implementation
study of mlops tools. https://github.com/zakkarija/mlops_comparison, 2025.
Accessed: August 2025.

[44] Anders Köhler. Evaluation of MLOps Tools for Kubernetes.
[45] Aditya Dixit, Haseeba Rahman, and Nivedita Patel. Comparison of Deploying

Deep Learning Models with MLflow on Different Cloud Platforms.
[46] Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann

Hong, Andy Konwinski, ClemensMewald, SiddharthMurching, Tomas Nykodym,
Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang,
Juntai Zheng, and Corey Zumar. Developments in MLflow: A System to Accel-
erate the Machine Learning Lifecycle. In Proceedings of the Fourth International
Workshop on Data Management for End-to-End Machine Learning, pages 1–4,
Portland OR USA, June 2020. ACM.

25

https://dvc.org/doc
https://docs.lakefs.io/
https://docs.feast.dev/
https://www.kubeflow.org/docs/components/pipelines/
https://www.kubeflow.org/docs/components/pipelines/
https://kubernetes.io/
https://www.kubeflow.org/docs/components/katib/
https://www.kubeflow.org/docs/components/katib/
https://mlflow.org/docs/latest/ml/traditional-ml/tutorials/hyperparameter-tuning/notebooks/hyperparameter-tuning-with-child-runs/
https://mlflow.org/docs/latest/ml/traditional-ml/tutorials/hyperparameter-tuning/notebooks/hyperparameter-tuning-with-child-runs/
https://mlflow.org/docs/latest/index.html
https://www.tensorflow.org/tfx/guide/mlmd
https://www.kubeflow.org/docs/components/model-registry/
https://www.kubeflow.org/docs/components/model-registry/
https://kserve.github.io/website/
https://charmed-kubeflow.io/docs
https://charmed-kubeflow.io/docs
https://ubuntu.com/22-04
https://microk8s.io/
https://juju.is/
https://www.deploykf.org/docs/
https://github.com/google/ml-metadata
https://www.tensorflow.org/tfx/guide/mlmd
https://github.com/zakkarija/mlops_comparison

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

A Appendix - MLOps Tools Field Reports
This appendix provides detailed field reports for each MLOps tool evaluated across four dimensions: Usability, Functionality, Flexibility, and Vitality. Each
report includes a description, systematic test plan with detailed results, and comprehensive scoring rationale.

A.1 DVC (Data Version Control)
Stack: MLflow Component: Storage and Versioning

Developer: Iterative License: Apache 2.0

Version: 2.3 Date Evaluated: June 4, 2025

Description: Git-like data versioning system that tracks large datasets alongside

code repositories. Uses pointer files to manage data while storing actual files in configurable remote storage backends. Systematic Test Plan:
(1) Install & Configure on Ubuntu and macOS: Started with pip install dvc[s3] to get S3 support. Result: Installation was refreshingly simple - just

one pip command worked on both my Ubuntu and Mac machines. The documentation listed various storage options (s3, gdrive, gs, azure, ssh, hdfs,
webdav, oss) which was helpful. Setting up MinIO took a bit of configuration but nothing too complex.

(2) Initialize and Add IDEKO Dataset: Set up DVC in my existing Git repository and tracked the CSV files. Result: Running dvc init created the necessary
.dvc directory structure. When I ran dvc add data/, it generated a pointer file (data.dvc) with an MD5 hash and automatically added the actual data
folder to .gitignore. This felt natural coming from Git - the workflow was immediately familiar.

(3) Branch and Modify Dataset: Created feature branches to test different dataset versions. Result: After deleting some columns from the CSV to simulate a
data change, running dvc add updated the pointer file with a new hash. The seamless integration with Git meant I could track data changes just like
code changes, though I had to remember to push both DVC and Git changes in the right order.

(4) Test Rollback to Previous Versions: Tried reverting the dataset two versions back. Result: This wasn’t as seamless as I’d hoped. When I ran git
checkout HEAD 2, I ended up in a detached HEAD state. Trying to commit from there created merge conflicts in the .dvc files. I had to work around this
by checking out to a new branch from the old commit, running dvc checkout to sync the data, then merging back. The conflicts just showed MD5 hash
differences - not very helpful for understanding what actually changed in the data.

(5) Cross-platform Clone & Pull: Cloned the repository on my Mac after setting everything up on Linux. Result: Running dvc pull worked seamlessly
- I got the exact same dataset with matching MD5 verification. The commands behaved identically across platforms, which was reassuring for team
collaboration. I didn’t test Windows directly but noted that it requires WSL for full compatibility.

(6) Branch Merge with Divergent Data: Created two branches where each modified the dataset differently. Result: As expected, merging produced conflicts
in the .dvc pointer files. Unlike code merges where you can see the actual differences, DVC only showed that the MD5 hashes differed. I had to manually
examine the hashes and choose which version to keep - not ideal when you can’t see what actually changed.

(7) Pipeline Reproducibility: Set up DVC pipeline stages using dvc.yaml. Result: The dvc repro command worked well for reproducible pipeline
execution. I tracked my hyperparameter YAML files with DVC, which meant I could recreate exact training runs. The pipeline caching was a nice touch -
unchanged stages were automatically skipped on subsequent runs. The dvc dag command gave me a clear visualization of dependencies between my
data processing, training, and evaluation stages.

(8) Storage Backend Testing: Experimented with different storage backends. Result: S3 and MinIO behaved identically in my tests. I briefly tried SSH
remote which worked but needed key setup. Local filesystem was fine for quick tests but obviously not suitable for team collaboration. Switching between
backends was straightforward with dvc remote add.

Dimension Criterion Rating Rationale

Usability Installation High Single pip command with optional backend extras ([s3], [gdrive], etc.). Clean
conda installation also available. No compilation or complex dependencies
required.

Setup High dvc init creates structure in seconds, dvc remote add configures storage
with one command. Git-like workflow familiar to developers.

Configuration Medium Basic setup straightforward, but advanced features (cache management, shared
cache, external dependencies) require manual .dvc/config editing. ACL and
IAM integration needs careful configuration.

Ease of Use Medium Commands mirror Git (add, push, pull, checkout) - intuitive for Git users.
However, those without Git experience face steep learning curve. No free GUI
- DVC Studio is paid enterprise tool.

Documentation High Clear installation guide, practical examples for each storage backend, well-
organized troubleshooting section. Community tutorials abundant.

Overall High Excellent CLI usability for Git users, but accessibility limited without Git
fluency or visual tools

Functionality Completeness Medium Provides data versioning and pipeline orchestration but lacks built-in model
registry or experiment tracking. Requires integration with other tools for
complete MLOps.

Appropriateness High Perfectly suited forML data versioning needs. Integrates naturally with existing
Git workflows. Handles both structured and unstructured data.

26

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

DVC (continued)

Dimension Criterion Rating Rationale

Reliability Medium Generally stable but merge conflicts in pointer files can be challenging. MD5
checksums ensure data integrity but conflict resolution requires manual inter-
vention.

Overall Medium Core features solid but requires careful handling during merges

Flexibility Platform Support Medium Native on Linux/macOS. Windows requires WSL for full features. Available
via pip, conda, brew, snap, choco.

Integration Ready High 8+ storage backends, CI/CD patterns documented, Python API available. IDE
plugins for VSCode and JetBrains.

Ease of Integration High Simple CLI and Python APIs. Environment variables for configuration. Hooks
for automation.

Modularity Medium Tight Git coupling beneficial but constraining. Can’t use DVC without Git
repository. Some teams need data versioning without code versioning.

Overall Medium Very flexible within Git-based workflows, less so outside

Vitality Community High 13k+ GitHub stars, 300+ contributors, active Discord with 10k+ members. Used
by major companies and research institutions.

Maturity High Stable since 2017, version 2.x shows API stability. Wide production deploy-
ments documented.

Development High Weekly commits, monthly releases. Iterative company provides commercial
support and development.

Documentation High Comprehensive docs, migration guides between versions, active blog with best
practices.

Overall High Extremely healthy and mature project with strong backing

A.2 LakeFS
Stack: Kubeflow Component: Storage and Versioning

Developer: Treeverse License: Apache 2.0

Version: 1.61 Date Evaluated: June 11, 2025

Description: Git-like version control for object storage. Provides data versioning

through metadata operations without duplicating actual data. Works with S3-compatible storage and can be deployed on Kubernetes. Systematic Test Plan:
(1) Install LakeFS using the quickstart setup: Used pip install followed by the quickstart command. Result: pip install lakefs went smoothly, then

python -m lakefs.quickstart deployed the required components (LakeFS, MinIO, Postgres) as Docker containers. The web UI launched automatically
and an admin user was created with credentials shown in the terminal. The quickstart was deceptively simple though. For a real production setup, I
realized I’d need to deploy three separate components: LakeFS server on some compute instance, PostgreSQL or RDS for metadata, and S3 instead of
MinIO for actual storage. Quite different from DVC’s single pip install approach.

(2) Create a repository with the IDEKO dataset: Used the web interface to set up the repository and upload data. Result: Repository creation and dataset
upload worked really smoothly through the drag and drop UI. The interface was intuitive and I appreciated having a visual way to manage the data. If the
data had been in Parquet format instead of CSV, I could have queried it directly with LakeFS’s built in DuckDB, which would have been nice.

(3) Configure the lakefs CLI management tool (lakectl) to interact with the LakeFS Kubernetes pod: Set up lakectl to control LakeFS from the
command line. Result: This is where things got frustrating. Configuring lakectl should have been straightforward (just access key, secret key, and LakeFS
URL) but the connection kept failing with unhelpful error messages. After extensive debugging, I finally discovered it was just a typo in my secret key.
The error messages gave absolutely no useful hints about what was actually wrong, just generic authentication failures. Would have saved me a lot of
time if the errors were more specific.

(4) Create branches for different dataset versions: Tested the branching functionality. Result: Branching worked well and didn’t require copying all the
data, which was a nice performance advantage. I could use familiar Git-like commands such as lakefs diff to see changes between commits. The zero
copy branching felt efficient compared to other approaches I’ve used.

(5) Perform rollback operations to previous commits: Tested reverting to earlier versions. Result: Rollback using lakefs branch reset worked cleanly.
Unlike my experience with DVC where rollbacks sometimes created merge conflicts in pointer files, LakeFS handled this smoothly. The history was
preserved so I could still access what I called "future" commits if needed.

(6) Merge branches containing different dataset modifications: Tested different merge methods. Result: I was impressed that merging could be done
three different ways. Through the CLI with lakectl, via pull requests in the web UI (which felt very GitHub-like), or even through the REST API. All three
methods worked as expected. The UI pull request workflow was particularly nice with its visual diff and approval process.

Dimension Criterion Rating Rationale

Usability Installation Low Quickstart trivial but misleading. Production requires PostgreSQL, object stor-
age, and LakeFS server setup. Each component needs proper sizing, backup,
monitoring.

27

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

LakeFS (continued)

Dimension Criterion Rating Rationale

Setup Low Three moving parts increase complexity exponentially. Networking between
components, authentication setup, storage configuration all required.

Configuration Low CLI error messages unhelpful - "401 Unauthorized" for any credential issue.
No indication if wrong endpoint, key, or secret. Took 40+ minutes to debug
simple typo.

Ease of Use High Web UI exceptional - drag-drop uploads, visual branch graph, intuitive naviga-
tion. Pull request workflow familiar from GitHub.

Documentation Medium Quickstart excellent, production deployment guidance weak. Troubleshooting
section missing. Kubernetes examples outdated.

Overall Low Great UI undermined by complex architecture and poor error handling

Functionality Completeness High Full Git-like semantics for data - branch, merge, diff, log, blame. Hooks for
validation. RBAC at branch level.

Appropriateness High Perfect for object storage versioning. Zero-copy critical for data lakes. S3 API
compatibility enables tool reuse.

Reliability High ACID transactions on metadata. Copy-on-write prevents corruption. Post-
greSQL backend proven. MinIO or S3 for data reliability.

Overall High Enterprise-grade data versioning capabilities

Flexibility Platform Support High Runs on Kubernetes, Docker, bare metal. Supports S3, GCS, Azure Blob. Clients
for Python, Go, Java, JavaScript.

Integration Ready High S3 API compatibility means existing tools work unchanged. REST API com-
prehensive. SDKs well-designed.

Ease of Integration Medium S3 compatibility helpful but requires understanding object storage patterns.
Path conventions different from filesystem.

Modularity Medium Kubernetes-native architecture limits standalone usage. Clean separation of
components but requires full infrastructure stack - metadata (PostgreSQL),
data (object store), control plane (LakeFS). Each component replaceable.

Overall High Excellent fit for cloud-native architectures

Vitality Community High 4.2k GitHub stars, growing community. Slack active with regular engagement
Maturity High Version 1.0+ production ready. Stable APIs and proven in production environ-

ments.
Development High Frequent releases (bi-weekly). Cloud offering shows commitment.
Documentation Medium Good basics but lacks depth. Few troubleshooting guides. Community examples

limited.

Overall High Strong project with active development and commercial backing

A.3 Feast (Feature Store)
Stack: Both Component: Storage and Versioning

Developer: Tecton License: Apache 2.0

Version: 0.44 Date Evaluated: June 14, 2025

Description: Feature store for ML pipelines that provides consistent feature compu-

tation and storage. Maintains offline features for training and online features for serving with point-in-time correctness. Helps prevent training-serving skew
through registry-backed schema control. Systematic Test Plan:
(1) Install Feast: Set up Feast using pip. Result: Installation succeeded on the first attempt with a single pip install feast>=0.44 command. No native

dependencies or Docker needed, which was nice.
(2) Initialize a new feature repository and configure the backend feature store: Set up the Feast project structure. Result: The feast init command

created an example repository structure with all the required files. Got feature_store.yaml for backend storage and project settings, and features.py
for feature schemas and data types. The ready-made template was helpful but there was still a learning curve to understand concepts like entities, feature
views, and feature services. This took me some time to wrap my head around.

(3) Register IDEKO dataset features with Feast: Convert and register the IDEKO data. Result: Feast requires Parquet files, which is a columnar storage
format that’s more efficient than CSV for analytical workloads. Since IDEKO’s dataset was in CSV format, I had to write a convert_data.py script to
transform the data into Feast-compatible Parquet. The script also needed to add required columns like timestamps and entity IDs for each machine.
Initially found the Parquet requirement a bit frustrating, but I could see why they chose it for the compression and query performance benefits.

(4) Define and register initial feature schemas: Set up feature definitions. Result: Configuring Feast involved modifying multiple files. I defined entities
(machine_id) and created feature views with the f1-f4 sensor readings plus some computed features like rolling averages and anomaly scores. Running
feast apply was reassuring as it showed an explicit diff before applying changes, which helped avoid mistakes. The registry gets stored as a protobuf in
data/registry.db. The configuration felt like significant overhead for our smaller project, though I could see how it would pay off for larger teams.

(5) Test schema evolution by updating a feature definition: Modified feature definitions to test versioning. Result: I updated a rolling average window
size from 10 to 20 samples. When I ran feast apply, it displayed exactly what changed. The CLI blocked deployment until I approved the change, then

28

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Figure 4: LakeFS version control interface showing a pull request for adding electrical data anomalies to the IDEKO dataset.

logged everything. Using feast registry-dump gave me a structured, diffable audit trail of every schema change in YAML format. This was much
better than what would happen with raw Parquet plus DVC, where a rename would silently break the trainer.

Dimension Criterion Rating Rationale

Usability Installation High Single pip install, no native dependencies. Template project helpful starting
point.

Setup High While concepts require initial study, setup process is straightforward with
clear examples.

Configuration Medium YAML configuration manageable but three files minimum (feature_store.yaml,
features.py, plus conversion scripts).

Ease of Use Medium Powerful once configured but heavyweight for small teams. ROI emerges at
scale or with multiple models.

Documentation High Comprehensive guides, clear examples. Concepts well-explained though learn-
ing curve remains.

Overall High Initial learning investment pays off with robust feature management

Functionality Completeness Medium Feature storage excellent but not full MLOps. No model registry, experiment
tracking, or deployment.

Appropriateness High Solves training-serving skew perfectly. Schema enforcement prevents silent
failures. Point-in-time correctness essential.

Reliability High Registry diffs prevent breaking changes. Protobuf storage robust. Materializa-
tion jobs idempotent.

Overall High Excellent at its specific purpose

Flexibility Platform Support Medium Python-first, experimental Go/Java SDKs. Runs on any OS with Python.
Integration Ready High Providers for Spark, Kubernetes, Airflow. Plugins for various offline/online

stores.
Ease of Integration Medium SDK integration straightforward but version matching critical. Breaking

changes between 0.x versions.
Modularity Low Monolithic adoption required - can’t use just online or offline store. All-or-

nothing approach.

Overall Medium Good ecosystem integration, low internal modularity

Vitality Community Medium 4.5k GitHub stars. Slack active but niche community. Corporate and academic
users documented.

Maturity Medium Pre-1.0 signals API instability. 0.44 shows progress but breaking changes still
occur.

Development High Tecton backing ensures development. Frequent releases (monthly). Active RFC
process.

Documentation High Official docs excellent. Community blogs growing. Video tutorials available.

29

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

Feast (continued)

Dimension Criterion Rating Rationale

Overall Medium Rapidly maturing but not yet stable

A.4 Apache Airflow
Stack: MLflow Component: Orchestration

Developer: Apache License: Apache 2.0

Version: 3.0 Date Evaluated: June 18, 2025

Description: Platform for programmatically authoring, scheduling, and monitoring workflows. Uses Python to define DAGs (Directed Acyclic Graphs)
with rich operator ecosystem for integrating with external systems.

Systematic Test Plan:
(1) Installation with Constraints: Install via pip with version constraints. Result: Required downloading constraints file for Python 3.9 + Airflow 2.7.

Installation command complex: pip install apache-airflow==2.7.0 –constraint constraints-3.9.txt. Constraints conflicted with existing
packages - Feast pinned to 0.31 (needed 0.44). Manual override required, risking stability.

(2) Initialize with Standalone: Quick setup for development. Result: airflow standalone magical for development - initialized database (SQLite), created
admin user, started webserver and scheduler. Password shown in terminal. UI accessible in 30 seconds. Warning: "Do not use in production" - production
needs separate services.

(3) Create IDEKO Pipeline DAG: Implement DVC→ preprocess→ train→MLflow workflow. Result: DAG definition required learning: (1) Operator
types (BashOperator, PythonOperator), (2) Task dependencies via » syntax, (3) XCom for passing data between tasks, (4) Jinja templating for dynamic
values. Initial DAG failed - module imports, path issues. 6 iterations to working pipeline.

(4) UI Functionality Testing: Explore monitoring capabilities. Result: UI excellent for monitoring: Graph view shows DAG structure, Grid view displays run
history, Gantt chart reveals bottlenecks, Logs accessible per task (but verbose with Airflow internals). Cannot create DAGs via UI - code only. Manually
triggered runs work instantly.

(5) Scheduling Verification: Test cron and sensors. Result: Cron expression 0 2 * * * ran nightly as expected. FileSensor watched for new data files.
S3Sensor required AWS credentials configuration - added via Connections UI. Dataset-aware scheduling worked but undocumented.

(6) MLflow Integration: Log experiments from Airflow tasks. Result: No official MLflow operator. Created custom PythonOperator wrapping MLflow calls.
Each DAG run mapped to MLflow experiment. XCom passed run IDs between tasks successfully. Integration code verbose but functional.

(7) Failure Handling: Test retries and alerting. Result: Task retries worked (default 2 attempts). Email alerts required SMTP configuration - sent on task
failure and SLA miss. Callback functions enabled custom notifications. Recovery from mid-pipeline failures seamless.

(8) Production Configuration Review:Document production requirements. Result: Standalone inadequate for production. Required: (1) PostgreSQL/MySQL
instead of SQLite, (2) CeleryExecutor or KubernetesExecutor for parallelism, (3) Redis/RabbitMQ for Celery, (4) Separate webserver, scheduler, worker
processes, (5) Monitoring (Flower for Celery, Prometheus metrics). Estimated 2-3 days setup.

Figure 5: Screenshot of the Apache Airflow DAG interface showing the IDEKO multiclass ML pipeline execution.

30

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Dimension Criterion Rating Rationale

Usability Installation Medium Constraints file complexity, dependency conflicts common. Standalone helps
but production setup extensive.

Setup Medium Database, executor, message broker all need configuration. Environment vari-
ables numerous.

Configuration Low Python-based config complex and verbose. Connection management via UI
helpful but overall configuration challenging.

Ease of Use Medium Monitoring UI good but DAG syntax has learning curve. Requires Python
expertise.

Documentation Medium Comprehensive but scattered. Every feature documented but lacks cohesive
tutorials.

Overall Medium Powerful but complex - significant learning curve despite good UI

Functionality Completeness High Scheduling, monitoring, alerting, distributed execution, SLA tracking, backfill-
ing - all included.

Appropriateness High Perfect for batch ML pipelines. Less suited for streaming. Handles complex
dependencies well.

Reliability High Battle-tested since 2014. Automatic retries. State recovery. Zombie task detec-
tion.

Overall High Comprehensive orchestration platform

Flexibility Platform Support High Linux, macOS, Windows (WSL). Docker, Kubernetes. Multiple executors.
Integration Ready High 200+ operators. AWS, GCP, Azure providers. Extensible plugin system.
Ease of Integration Medium PythonOperator flexible but requires custom code. Integration requires effort.
Modularity Medium Core components coupled but plugins modular. Can’t easily swap components.

Overall High Highly adaptable despite some integration complexity

Vitality Community High 35k+ GitHub stars. Apache governance. Massive adoption (Airbnb, Netflix,
Twitter).

Maturity High Production since 2014. Version 2.x stable. Well-understood patterns.
Development High Monthly releases. 2000+ contributors. Active mailing lists.
Documentation Medium Official docs extensive but poorly organized. Books published. Conference

talks abundant.

Overall High One of healthiest open-source data projects

A.5 Kubeflow Pipelines
Stack: Kubeflow Component: Orchestration

Developer: CNCF/Google License: Apache 2.0

Version: 1.1 Date Evaluated: July 1, 2025

Description: Platform for building and deploying portable, scalable ML workflows

using containers on Kubernetes. Each pipeline component runs in isolated pods with explicit artifact passing. Systematic Test Plan:
(1) Install and setup Kubeflow Platform (includes Kubeflow Pipelines): Selected a Kubeflow distribution and deployed it. Result: Multiple installation

options complicated the selection process with no obvious default. I compared DeployKF (which bundles MLflow and Airflow but uses outdated versions)
against Charmed Kubeflow and chose Charmed since it had the most recent Kubeflow version. Installation required Ubuntu 22, MicroK8s (Canonical’s
lightweight Kubernetes), and Juju (also by Canonical). The deployment took around 15 to 20 minutes to provision approximately 25 services. After port
forwarding, I noticed the namespace and service names differed from the documentation, which was confusing.

(2) Create a user account through Dex (OpenID Connect provider): Set up authentication and user accounts. Result: Dex authentication worked with
the default credentials from the tutorial. However, the user and namespace structure varied significantly between distributions. DeployKF creates team1,
team2, and admin groups with corresponding namespaces, while Charmed Kubeflow only created an admin namespace. The documentation didn’t clarify
these distribution-specific architectural decisions, leaving me to figure it out through trial and error.

(3) Create a pipeline that clones the code, pulls the dataset, trains and registers the model: Built the complete ML pipeline. Result: This took over 50
hours total, making it by far the most frustrating tool yet. Initial pipeline creation hit SQL character set incompatibilities between the KFP SDK and the
MySQL pod in the deployment. While LakeFS was our planned tool, I opportunistically tested DVC since our data was already versioned in it. DVC
integration revealed critical credential conflicts: both DVC and Kubeflow’s MinIO use identical AWS S3 credential formats but expect them in different
namespaces. I spent hours debugging why DVC couldn’t authenticate. Eventually switched to LakeFS which worked immediately since its Helm chart
includes a pre-configured MinIO instance, avoiding the credential mess entirely. The UI could observe pipelines but not define them, everything had to be
written in code.

(4) Test the different pipeline upload methods: Evaluated different ways to submit pipelines. Result: Manual upload was tedious: compile the Python
script to YAML using the KFP SDK, upload via UI, create a pipeline, then an experiment, then finally run it. For iterative development this took way too
long. Programmatic submission using kfp.Client().create_run() was better but still required authentication setup. The built-in Jupyter notebooks
and VS Code environments simplified authentication with just a single line of code, but meant abandoning my familiar IDE with all its extensions. SDK
v1 vs v2 syntax differences caused additional errors with no documentation explaining the changes.

31

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

(5) Examine logs and debug information through UI and kubectl: Test logging and debugging capabilities. Result: Logging visibility was poor. The UI
only showed logs from the last failed component. To see previous components’ logs, I had to use kubectl commands like kubectl logs pod-name -n
kubeflow-user. There was no centralized log view. The filesystem was also invisible, so when trying to verify if git clone worked, I couldn’t see where
files were saved without using kubectl exec to get into the pod.

(6) Re-run identical pipelines to verify caching behaviour: Test the caching mechanism. Result: Caching functioned but created more problems than it
solved. Failed runs were also cached, so when I changed code and reran, it just returned the old cached error. Disabling cache proved difficult due to
undocumented differences between SDK v1 (which uses execution_options) and v2 (which uses .set_caching_options()). The documentation was
wrong for both versions. Manual cache invalidation required deleting pods.

(7) Force component pod failures to test retry and recovery mechanisms: Test fault tolerance. Result: KFP detected terminated pods and automatically
restarted them. The pipeline would pause at the failed component and resume once recovery completed, showing good fault tolerance. However, I
encountered a critical infrastructure issue: the MySQL pod suddenly started consuming 16GB of RAM regardless of configuration attempts. I tried
modifying Juju charm settings and editing the pod directly, but it consistently respawned with 16GB allocation. This brought my 32GB machine to a
crawl. The only solution was deleting the entire cluster and starting fresh, losing a day of work.

Figure 6: Screenshot of the Kubeflow Pipelines execution graph showing the successful completion of the IDEKOmodel training
pipeline

Dimension Criterion Rating Rationale

Usability Installation Medium Multiple distributions complicate selection. Setup takes 15-20 minutes with
prerequisites, no obvious choice. Each requires different prerequisites. Docu-
mentation fragmented.

Setup Low Namespace structure varies by distribution. Authentication differs. Permissions
complex.

Configuration Low SQL charset issues, credential conflicts, SDK version confusion all common.
Ease of Use Low Steep Kubernetes learning curve. Poor log visibility. Can’t create pipelines in

UI.
Documentation Low Outdated, distribution-blind. SDK v1/v2 differences undocumented. Many

broken links.

Overall Low Power at excessive complexity cost

Functionality Completeness High Full workflow engine, caching, retries, scheduling, artifact management, lin-
eage tracking.

32

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

Kubeflow Pipelines (continued)

Dimension Criterion Rating Rationale

Appropriateness High Containerization ensures reproducibility. Kubernetes provides scaling. Artifact
passing prevents hidden dependencies.

Reliability High Kubernetes restarts failed pods reliably. Recovery mechanisms robust despite
setup challenges.

Overall High Feature-rich and reliable once configured

Flexibility Platform Support Medium Kubernetes-only limits options but works across cloud providers.
Integration Ready High Native Kubeflow integration. Works with Katib, KServe, MLMD, Feast out of

box.
Ease of Integration Low Rigid artifact passing. Component isolation complicates simple tasks. Type

system inflexible.
Modularity High Components theoretically swappable. Clear separation of concerns.

Overall Medium Powerful within Kubeflow, painful otherwise

Vitality Community High Large community under Kubeflow umbrella. Google backing. Spotify uses at
scale.

Maturity Medium Core stable but frequent API changes between SDK versions. SDK v1/v2 differ-
ences cause compatibility issues.

Development High Active development continues with regular updates.
Documentation Low Significant gaps. Distribution differences undocumented. Troubleshooting

guides minimal.

Overall High Strong community despite documentation issues

A.6 Optuna
Stack: MLflow Component: Hyperparameter Optimization

Developer: Preferred Networks License: MIT

Version: 4.4 Date Evaluated: June 21, 2025

Description:Define-by-run hyperparameter optimization frame-

work with state-of-the-art algorithms. Features automatic pruning of unpromising trials, parallelization support, and native integration with major ML
frameworks. Systematic Test Plan:
(1) Install Optuna and the optional dashboard: Set up Optuna with visualization capabilities. Result: Installation was simple with a single pip install

optuna command for the core library. The dashboard was in a separate package, so I had to run pip install optuna-dashboard as well. I appreciated
this modular approach since not everyone needs the visualization component. The installation went smoothly with no dependency conflicts.

(2) Create an HPO study for IDEKO’s Keras models: Set up hyperparameter optimization for the models. Result: Optuna recognized all four of IDEKO’s
Keras models (NN, LSTM, CNN, RNN) right out of the box without needing any framework-specific configuration. The native Keras integration was
seamless, it just accepted Keras objects directly for optimization. The define-by-run API felt intuitive since the search space was defined right in the
objective function rather than in separate config files.

(3) Configure a search space for learning rate, batch size, and hidden units: Define the parameter ranges to explore. Result: The search space
definition for learning rate (0.0001-0.1), batch size (16-128), and hidden units (32-512) was embedded directly in the objective function using calls like
trial.suggest_float() for continuous parameters and trial.suggest_int() for integers. This follows Optuna’s approach where everything is
defined in code rather than YAML files, which I found more natural as a Python developer.

(4) Execute an optimization study with the TPE sampler: Run the hyperparameter search. Result: I ran 50 trials using the default Tree-structured Parzen
Estimator (TPE) algorithm, which is a Bayesian optimization method. The best configuration appeared around trial 30, with subsequent trials confirming
the convergence. I could see the real-time progress in the terminal which was helpful for monitoring.

(5) Integrate Optuna with MLflow tracking: Connect Optuna trials to MLflow experiments. Result: This initially failed with frustrating parameter conflict
errors. MLflow’s parameters are immutable (can’t be overwritten), but Optuna needs to log parameters for multiple trials. The error "Parameter already
logged" kept appearing. After some research, I found the solution: install pip install optuna-integration and use the MLflowCallback. This creates
child runs for each Optuna trial, isolating the parameters. Only took a few lines of code to fix once I understood the pattern.

(6) Test pruning functionality: Evaluate early stopping of unpromising trials. Result: Optuna’s MedianPruner automatically stopped trials that were
performing below the median of previous trials at the same step. In my run, 12 out of 50 trials were pruned early, which saved computation time. The
pruning decisions were logged, and the KerasPruningCallback integrated seamlessly with our Keras models.

(7) Examine dashboard visualization and study diagnostics: Explore the visualization capabilities. Result: The dashboard provided really comprehensive
visualizations at localhost:8080. I could see optimization history plots showing how the objective improved over time, parallel coordinate diagrams that
revealed parameter interactions, and parameter importance rankings. These visualizations gave immediate insights into the optimization process. I
noticed batch size 64 was consistently optimal across different learning rates, which was an interesting pattern.

33

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

Dimension Criterion Rating Rationale

Usability Installation High Single pip command. Optional dashboard separate. No compilation or system
dependencies.

Setup High Define-by-run API means no config files. Search space in Python code. Imme-
diately productive.

Configuration Medium MLflow integration required extra package and child-run pattern. Production
storage needs database setup.

Ease of Use High Pythonic API. Excellent defaults. Pruning automatic. Framework callbacks
provided.

Documentation Medium Examples exist but could be more comprehensive. API reference adequate.

Overall High Smoothest HPO experience available

Functionality Completeness High Multiple samplers (TPE, CMA-ES, Random, Grid), pruners (Median, Hyper-
band), storage backends, visualization.

Appropriateness High Balances automation with control. Define-by-run natural for ML workflows.
Reliability High Robust error handling. Automatic retries. SQLite corruption recovery. Clean

trial isolation.

Overall High Complete and dependable HPO solution

Flexibility Platform Support High Pure Python - works everywhere. No compiled extensions. Container-friendly.
Integration Ready High Native callbacks for TensorFlow, PyTorch, Keras, XGBoost, LightGBM, scikit-

learn. MLflow, Weights&Biases, TensorBoard integrations.
Ease of Integration High Callbacks handle framework specifics. Most integrations single import. Well-

designed extension points.
Modularity High Samplers, pruners, storage all pluggable. Custom implementations straightfor-

ward.

Overall High Extremely flexible architecture

Vitality Community High 10k GitHub stars. Active and growing community. Japanese company backing.
Maturity Medium Stable since 2018. Version 3.x shows API maturity. Production deployments

documented.
Development High Monthly releases. Quick issue responses. New samplers/pruners regularly

added.
Documentation Medium English/Japanese docs available but some areas lack depth.

Overall High Healthy specialized community with strong momentum

A.7 Katib
Stack: Kubeflow Component: Hyperparameter Optimization

Developer: CNCF License: Apache 2.0

Version: 0.18 Date Evaluated: July 4, 2025

Description: Kubernetes-native hyperparameter tuning service. Supports

multiple ML frameworks and optimization algorithms. Runs trials in isolated pods with automatic resource management. Systematic Test Plan:
(1) Access Katib UI through the Kubeflow dashboard: Verify Katib is available. Result: Katib came pre-integrated in both DeployKF and Charmed

Kubeflow distributions. It appeared as a dedicated tab in the Kubeflow dashboard without requiring any additional configuration or service deployment.
The integration was seamless within the Kubeflow ecosystem, which was one less thing to configure.

(2) Define an experiment through the UI: Set up the hyperparameter search configuration. Result: Creating a Katib experiment required navigating
through eight configuration sections in the UI: metadata, objective spec, algorithm selection (Bayesian/Random/Grid), parameters with ranges, trial
template with container spec, metrics collector, early stopping rules, and parallel trial count. This was overwhelming initially but the form validation and
dropdown menus for each field helped guide the configuration. The validation caught errors before submission which saved some debugging time.

(3) Execute the hyperparameter search: Run the optimization experiment. Result: Initial experiments failed with "Couldn’t find any successful Trial"
error, which wasn’t very helpful. After debugging, I discovered Katib’s containerized training requires parameters to be printed in a very specific format:
metric_name=value to stdout. The existing IDEKO training scripts had to be modified to output exactly accuracy=0.95, not "Accuracy: 0.95" or JSON
format. Even after fixing the output format locally, the training script still required careful adjustments to produce the exact output Katib expected within
its containerized environment. This took hours to figure out.

(4) Monitor trial progress and parallel execution: Track the running trials. Result: The Bayesian optimization with 20 maximum trials and 4 parallel
workers executed successfully once the format issues were resolved. The trials tab displayed real-time updates showing the different hyperparameter
combinations being tested, with learning rates ranging from 0.0001 to 0.1, batch sizes from 16 to 128, and network architectures from 32 to 256 hidden
units. Each trial ran in its own separate pod which was nice for isolation.

(5) Validate resource allocation and pod management: Check how resources are handled. Result: Each trial ran in its own isolated Kubernetes pod.
After each trial completed, Katib automatically deleted the pod and freed the allocated CPU and memory resources, preventing resource accumulation
from failed or completed experiments. However, accessing logs from individual trial pods before cleanup was frustrating. I needed to use kubectl logs
commands because Kubeflow’s log viewing capabilities were limited. The UI only showed "Failed" status without details, requiring manual pod inspection.

34

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

(6) Test early stopping behaviour: Verify the pruning mechanism. Result: The early stopping mechanism functioned as configured, terminating trials that
showed no improvement after the specified iterations. Pod cleanup was automatic with no resource leaks observed, which was good for long-running
experiments.

(7) Examine parallel coordinates visualization: Analyze the results visualization. Result: The parallel coordinates plot was excellent and elegantly
revealed parameter relationships. I could see that lower learning rates combined with moderate batch sizes (around 64) consistently achieved better
accuracy. The visualization was much better than looking at tabular results. However, there was a confusing issue where the UI marked the experiment
as "successful" with a green checkmark despite not reaching the target metric. My experiment achieved only 50% accuracy against a 95% target but still
showed as successful. This could mislead teams since "success" apparently meant "completed without error" rather than "achieved objective".

Figure 7: Katib parallel coordinates visualization showing the relationship between hyperparameters and model performance
across multiple optimization trials.

Dimension Criterion Rating Rationale

Usability Installation Medium Ships with Kubeflow so no separate installation, but overall Kubeflow setup is
complex.

Setup Low Requires containerization. Specific metric format. Eight configuration sections.
Configuration Low Verbose UI configuration. Rigid output requirements. No programmatic defini-

tion.
Ease of Use Low High friction. Format debugging painful. Log access requires kubectl.
Documentation High Within Kubeflow docs, well-covered. Examples for major frameworks.

Overall Low Integration doesn’t offset rigid requirements

Functionality Completeness High Multiple algorithms, early stopping, parallel execution, resource management.
Appropriateness High Perfect for Kubernetes environments. Pod isolation valuable.
Reliability Medium Works when configured correctly. UI success indicators misleading.

Overall High Capable but requires expertise

Flexibility Platform Support Medium Kubernetes only. No local development. Tied to container infrastructure.
Integration Ready High Native to Kubeflow. Works with any containerized framework.
Ease of Integration Medium Metric format rigid. Container requirement adds complexity.
Modularity Medium Can run standalone but designed for Kubeflow.

35

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

Katib (continued)

Dimension Criterion Rating Rationale

Overall Medium Best within Kubeflow ecosystem

Vitality Community High Part of Kubeflow umbrella with large community.
Maturity Medium Stable core but evolving configuration requirements. Eight-section UI configu-

ration changes between versions.
Development High Active development continues with Kubeflow releases.
Documentation High Good coverage in Kubeflow docs.

Overall High Strong within Kubeflow context

A.8 MLflow Tracking
Stack: MLflow Component: Experiment Tracking

Developer: Linux Foundation License: Apache 2.0

Version: 2.21 Date Evaluated: June 21, 2025

Description: Comprehensive experiment tracking system for MLworkflows.

Logs parameters, metrics, artifacts, andmodels with automatic capture for supported frameworks. Provides web UI for visualization and comparison. Systematic
Test Plan:
(1) Install MLflow via pip: Set up MLflow on the system. Result: Installation was super simple with just pip install mlflow. It fetched all dependencies

without any conflicts or version issues, which was refreshing compared to other tools I’d tested.
(2) Setup local MLflow server and dashboard: Launch the tracking server and UI. Result: Running the MLflow tracking server required two simple shell

commands. I ran mlflow server and mlflow ui, each just needing a port definition. The UI was immediately accessible at localhost. When starting the
server, MLflow automatically deployed both the tracking backend and accompanying UI, which was convenient.

(3) Register IDEKO training runs as separate MLflow experiments: Configure experiment tracking for the models. Result: To enable tracking, I wrapped
the training code in mlflow.start_run() context blocks and specified which parameters to log. This only required minor modifications to the existing
scripts. I could log parameters, metrics, and artifacts within these blocks. The documentation actually recommends not wrapping the entire training in
one big start_run() block because if there’s a failure mid-flow, you need to manually clean up the invalid metadata, which I learned the hard way.

(4) Enable automatic experiment tracking: Test the autologging feature. Result: MLflow’s autologging for Keras was incredibly simple. Just one line of
code captured an insane amount of information: training metrics like loss and accuracy, hyperparameters including learning rate, batch size, optimizer
settings, even things like class weight and shuffle settings. It also logged the model architecture and final trained model artifact. Everything appeared in
the UI with fancy graphs displaying metrics over epochs. Zero manual logging required for all this, which was impressive.

(5) Track experiment metadata and custommetrics: Add custom tracking beyond autologging. Result: Custom metrics and tags were successfully logged
using calls like mlflow.log_metric() and mlflow.set_tag(). These helped organize and identify different experimental configurations. All metadata
was properly associated with their respective runs. I could track both training and inference runs, with parameters being particularly helpful for the
training runs. The tracking was very comprehensive.

(6) View what has been captured in the UI and examine available functionalities: Explore the dashboard features. Result: The MLflow dashboard was
split into three sections: Experiments, Models, and Prompts (though Prompts wasn’t relevant for our ML models). The Experiments section showed all
runs with details like when created, success status, duration, and source. Clicking on a run gave a complete overview with all metadata, visual graphs of
model metrics, parameters used, and artifacts created. The UI had excellent search and filtering functionality where I could sort by date, datasets used,
or filter by any metrics or parameters recorded. There were multiple ways of visualizing experiment runs and comparing them. The amount of data
collected and how MLflow visualized it was probably unparalleled. Advanced filtering worked with queries like searching for specific batch sizes or
accuracy thresholds.

Dimension Criterion Rating Rationale

Usability Installation High Single pip install. No dependencies beyond Python. Works immediately.
Setup High One environment variable (MLFLOW_TRACKING_URI). Defaults sensible.
Configuration High Optional configs via environment. Most users need nothing beyond defaults.
Ease of Use High Autolog eliminates boilerplate. UI intuitive. Search powerful.
Documentation High Best-in-class. Quick-start accurate. AI assistant helpful.

Overall High Industry-leading developer experience

Functionality Completeness High Comprehensive tracking including parameters, metrics, artifacts, models, and
datasets.

Appropriateness High Perfect for experiment tracking. Covers all standard ML metadata.
Reliability High Stable. Automatic retries. Clean error handling.

Overall High Excellent core tracking capabilities

Flexibility Platform Support High Windows, Mac, Linux. Docker. Kubernetes. Cloud services.
Integration Ready High Autolog for 15+ frameworks. REST API. Python/R/Java clients.
Ease of Integration High Usually single line of code. Well-designed abstractions.

36

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

MLflow Tracking (continued)

Dimension Criterion Rating Rationale

Modularity High Can be used independently or with other MLflow components.

Overall High Excellent integration and flexibility

Vitality Community High 18k+ GitHub stars. Databricks backing. Widespread adoption.
Maturity High Stable since 2018. Version 2.x indicates maturity.
Development High Weekly releases. Quick issue resolution.
Documentation High Constantly updated. Multiple languages. Video tutorials.

Overall High Extremely healthy project

Figure 8:MLflowexperiment tracking dashboard displaying comprehensivemetrics for the LSTMmodel training run showcasing
metrics across training epochs.

A.9 ML Metadata (MLMD)
Stack: Kubeflow Component: Experiment Tracking

Developer: CNCF/Google License: Apache 2.0

Version: 1.17 Date Evaluated: July 8, 2025

Description: Library for recording and retrieving workflow metadata. Originally developed for Kubeflow, now maintained by Google for TensorFlow
Extended. Provides artifact lineage and execution tracking without user interface.

Systematic Test Plan:
(1) Install MLMD: Set up and access MLMD. Result: I found MLMD was already pre-installed in both Charmed Kubeflow and DeployKF distributions,

which initially seemed convenient. However, I quickly discovered that the metadata was stored in the cluster’s MySQL pod, and accessing this data was
frustrating. I had to navigate through Kubernetes abstractions and understand the MinIO storage layers, which was way more complex than I expected
for just viewing metadata.

(2) Update the training script to register metadata: Integrate MLMD into the pipeline. Result: This was where things got really tedious. Unlike MLflow
which just captures things automatically, I had to explicitly define schemas for literally everything I wanted to track. I needed to create ArtifactTypes
for datasets and models, ExecutionTypes for training runs, ContextTypes for experiments, and worst of all, each individual hyperparameter had to be
declared as a typed property before I could store anything. The amount of upfront work just to start logging was annoying.

(3) Execute training and capture metadata: Run training and store metadata. Result:My initial attempts to inspect what was actually being stored through
the Kubernetes pods proved overly complex. I couldn’t easily see what MLMD was capturing, which was frustrating. This led me to install MLMD as a
standalone library outside of Kubeflow with a local MySQL backend. Finally I could get better visibility into what was actually being stored, but having to
set up a separate instance just for debugging felt like a workaround for poor design.

37

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

(4) Build a retrieval script to query saved metadata: Create queries to access stored data. Result: Constructing queries was harder than I anticipated. I
had to understand MLMD’s property-based storage model first, which wasn’t intuitive. When I tried to retrieve experiments with specific hyperparameter
values, it required multiple API calls through specific typed property paths. What should have been a simple query turned into a multi-step process that
took me a while to figure out.

(5) Verify that each model is correctly linked to its source dataset: Check lineage tracking. Result: This actually worked well. MLMD successfully
tracked the complete workflow, showing which dataset was used, what preprocessing steps were applied, and which model resulted from training on that
dataset. I could see how the raw data eventually became a trained model through every step and transformation in the pipeline. The dependency graph
was comprehensive, which was one of the few bright spots in this evaluation.

(6) Examine metadata visibility and accessibility: Assess how to view and access metadata. Result: This was disappointing. MLMD doesn’t offer any
visualization for the training run through the Kubeflow pipelines UI, which seems like a basic requirement. When I accessed the database directly in my
standalone instance, I could see MLMD’s complex internal schema with typed properties and graph-based relationships, but there was no user-friendly
way to view this. The lack of any native UI or visualization capabilities meant I had to write my own code just to see what was stored, which felt like
MLMD was really just a backend storage system, not a tool meant for users to interact with directly.

Dimension Criterion Rating Rationale

Usability Installation Medium Pre-installed in Kubeflow. Standalone needs database setup.
Setup Low Requires explicit type definitions. Complex schema design.
Configuration Low Property-based model verbose. No defaults or conventions.
Ease of Use Low No UI. Complex queries. Manual relationship management.
Documentation Low Broken links. Scattered examples. Assumes deep knowledge.

Overall Low Backend library, not user tool

Functionality Completeness Low Only metadata storage. No visualization, comparison, or search UI.
Appropriateness Medium Good for pipeline metadata. Overkill for simple experiment tracking.
Reliability High ACID transactions. Consistent storage. Well-tested.

Overall Medium Reliable storage, minimal features

Flexibility Platform Support High SQLite, MySQL, PostgreSQL backends. Runs anywhere.
Integration Ready High Integrates well within Kubeflow ecosystem. REST API available.
Ease of Integration Low Complex API. Multi-step operations. Type system rigid.
Modularity High Standalone library. Clean separation from other components.

Overall High Flexible backend despite complex integration

Vitality Community Low Limited standalone adoption. Hidden in Kubeflow/TFX.
Maturity High Stable for years. Powers production systems.
Development Low Slow development. Maintenance mode.
Documentation Low Multiple broken links. Minimal examples.

Overall Low Mature but neglected

A.10 MLflow Serving
Stack: MLflow Component: Model Serving

Developer: Linux Foundation License: Apache 2.0

Version: 2.21 Date Evaluated: July 18, 2025

Description: Simple model deployment through REST APIs. Automatically packages models with dependencies and serves predictions. Supports local
deployment and cloud transitions.

Systematic Test Plan:
(1) Install MLflow Serving dependencies: Set up serving requirements. Result: I was pleasantly surprised to find that MLflow Serving comes bundled with

MLflow, so there was no separate installation needed. The only additional requirement was the virtualenv package, which I had to install separately.
This was refreshingly simple compared to other serving tools I’d tested. MLflow uses this to create isolated Python environments for each served model,
which made sense for dependency management.

(2) Prepare a model for deployment: Get model ready for serving. Result: This was where MLflow really shined. The models I had already registered
through MLflow Models were immediately available for serving. All the dependencies and signatures had been captured during the initial model logging
process, so I didn’t have to do any additional preparation. It just worked, which was a relief after dealing with other tools that required extensive
reformatting.

(3) Deploy a trained model using MLflow Serving: Start the serving process. Result: The deployment succeeded with a single command, which was
amazing. It automatically created a virtualenv, installed all the captured dependencies, and started a REST server exposing prediction endpoints on the
port I specified. I kept expecting something to go wrong or require additional configuration, but it just worked out of the box. The simplicity was almost
suspicious after my experiences with KServe.

38

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

(4) Test the prediction endpoint with time series data: Send LSTM predictions. Result: This is where I was really impressed. All my model architectures
that accept three-dimensional tensor inputs (batch size, time steps, and sensor features) worked seamlessly without any custom preprocessing. I could
send nested JSON arrays and MLflow correctly parsed them into the required format. The auto logging feature had automatically captured the correct
input format specification during training, so I didn’t have to write any wrapper code. This was such a contrast to KServe, where I had to deal with CSV
uploads and custom preprocessing logic.

(5) Integrate MLflow Serving into the Airflow pipeline: Automate deployment workflow. Result: I successfully got the Airflow DAG to automate the
complete deployment workflow. It selected the best-performing model from my HPO experiments, promoted it to production status in the model registry,
started the serving process with health monitoring, and ensured graceful shutdown. However, this automation required me to write quite a bit of custom
orchestration logic to coordinate all these steps. While it worked reliably once I figured it out, the amount of custom code needed was more than I initially
expected.

(6) Test batch predictions: Verify multiple sample processing. Result: Batch predictions functioned correctly when I sent multiple samples in a single
request. I used the standard MLflow format with "instances" as the JSON key, and it processed all sequences simultaneously, returning probability
distributions for each sample. The fact that this worked without any special configuration was nice, though I did notice the single-threaded FastAPI
server was a bottleneck for larger batches. Still, for development and testing, this was more than adequate.

Dimension Criterion Rating Rationale

Usability Installation High Only virtualenv required. No complex dependencies.
Setup High Single command deployment. Zero configuration needed.
Configuration High Works with defaults. Ports and hosts configurable if needed.
Ease of Use High Model to API in one command. Handles complex inputs automatically.
Documentation High Clear about capabilities and limitations. Upgrade paths documented.

Overall High Simplest serving solution available

Functionality Completeness High Complete serving solution with REST API, health checks, and metrics.
Appropriateness High Perfect for development and testing. Clear production migration path.
Reliability High Stable operation with clean error handling and recovery.

Overall High Solid serving solution for most use cases

Flexibility Platform Support High Local, Docker, cloud services. Any OS with Python.
Integration Ready High Same model format works with SageMaker, AzureML, KServe, etc.
Ease of Integration High Model format standardized. Deployment targets well-documented.
Modularity High Serving independent of tracking/registry. Models portable.

Overall High Excellent portability and integration

Vitality Community High Part of MLflow ecosystem. Widely adopted.
Maturity High Stable serving solution proven in production.
Development High Actively maintained as part of MLflow.
Documentation High Honest about limitations. Clear upgrade guidance.

Overall High Healthy as MLflow component

A.11 KServe
Stack: Kubeflow Component: Model Serving

Developer: CNCF License: Apache 2.0

Version: 0.15 Date Evaluated: July 14, 2025

Description: Kubernetes-native serverless inference platform. Provides autoscaling, canary deployments, and multi-model serving for ML models.
Systematic Test Plan:

(1) Deploy SavedModel: Serve TensorFlow model. Result: KServe pre-installed in Charmed Kubeflow. Created InferenceService YAML pointing to
SavedModel. Deployment successful - TensorFlow runtime handled format automatically. Endpoint accessible via cluster ingress.

(2) Test with Sample Data: Send 20 timesteps. Result: Predictions incorrect. Investigation revealed model needed 18,000 timesteps for accurate anomaly
detection. JSON payload size limits hit - request too large. REST API design assumed small inputs.

(3) Implement CSVUpload:Handle large inputs. Result: Created custom Python predictor class: Inherited from KServe base model, implemented preprocess()
to parse CSV, load_model() to initialize, predict() for inference. Required understanding KServe’s class hierarchy. Documentation sparse on custom
predictors.

(4) Debug Deployment Issues: Fix serving errors. Result: Initial deployment failed with "Model not found". Logs unhelpful - generic 404 errors. After 8
hours debugging: model path in UI didn’t match expected format, MinIO credentials not mounted correctly, init container failed silently. No clear error
messages.

39

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

(5) Pipeline Integration Attempt: Connect to Kubeflow Pipelines. Result: Complete failure. KServe expects models at specific MinIO paths. Pipeline
outputs artifacts differently. Artifact URLs shown in UI don’t work for KServe. After 3 days: (1) Credentials wouldn’t mount properly, (2) Path translation
undocumented, (3) No working examples found. Abandoned integration.

(6) Autoscaling Test: Verify scale-to-zero. Result: Autoscaling worked when tested standalone. Scaled to zero after 60s idle. Scaled up on request (cold start:
15s). But couldn’t test under load due to pipeline integration failure.

(7) Model Registry Integration: Link to version control. Result: Kubeflow Model Registry not included in either distribution. Documentation references it
but not available. No automated versioning possible. Had to manage model versions manually.

(8) Performance Comparison: Measure vs MLflow serving. Result: When working: P50 latency similar (25ms), better concurrency handling, proper async
processing. But setup time: KServe 3 days vs MLflow 30 minutes. Integration success: KServe 0

Dimension Criterion Rating Rationale

Usability Installation High Pre-installed with Kubeflow. No separate setup needed.
Setup Medium Standard models work easily. Custom predictors require deep knowledge.
Configuration Low JSON size limits problematic. Custom classes needed for real use cases.
Ease of Use Low Error messages misleading. Debugging requires Kubernetes expertise.
Documentation Medium Basic docs exist but integration patterns undocumented.

Overall Medium Works for simple cases, fails for complex integration

Functionality Completeness High Autoscaling, canary deployments, A/B testing, multi-model serving all in-
cluded.

Appropriateness Medium Good for Kubernetes environments but artifact passing incompatible with
other Kubeflow components. Integration issues limit effectiveness.

Reliability Medium Serving stable but integration fragile. Silent failures common.

Overall High Powerful when working, integration unreliable

Flexibility Platform Support Medium Kubernetes only. No local development story.
Integration Ready Low Incompatible with Kubeflow Pipelines artifacts. Path issues unresolved.
Ease of Integration Low Fundamental architectural mismatch with pipeline system.
Modularity Medium Requires Kubernetes infrastructure. Can run standalone within Kubernetes

but not without it.

Overall Medium Flexible serving, inflexible integration

Vitality Community High Part of Kubeflow. CNCF project. Active development.
Maturity Medium Evolution from KFServing shows ongoing architectural changes. Version 0.15

indicates pre-1.0 status.
Development High Regular releases. New features added frequently.
Documentation Medium Core docs good but integration examples missing.

Overall High Strong project hampered by integration issues

A.12 MLflow Models
Stack: MLflow Component: Storage and Versioning

Developer: Linux Foundation License: Apache 2.0

Version: 2.21 Date Evaluated: June 25, 2025

Description: Standardized format for packaging ML models with metadata, dependencies, and signatures. Enables deployment across diverse serving
infrastructures by bundling model code, weights, environment specifications, and runtime signature in a portable file layout.

Systematic Test Plan:
(1) Setup MLflow Models: Verify module availability. Result: I found the mlflow.models module was already included in the core MLflow package, so I

didn’t need any additional installation beyond importing the package and the initial MLflow Tracking setup I’d already done. This was straightforward,
no extra configuration needed.

(2) Save the trained Keras model as an MLflow Model: Package the trained model. Result: When I called mlflow.pyfunc.log_model() during training,
it successfully and automatically stored each model bundled with its runtime signature, input example schema, and the list of dependencies in a
requirements.txt file. Everything was captured automatically, which saved me from having to track dependencies manually.

(3) Train multiple models with different metadata: Generate distinct model artifacts. Result: My multiple training runs produced distinct model artifacts,
and I noticed each artifact maintained its own metadata, version information, and associated metrics from the training process. This automatic separation
was helpful, as I didn’t have to worry about models overwriting each other.

(4) View saved models in the UI Models tab and their lineage: Check model visualization. Result: The UI Models tab clearly displayed every saved
model artifact I had created. It showed the originating run ID, training metrics, model version, input parameters and dataset. This made it really easy for
me to track which experiment produced which model, which was much better than trying to manage this manually.

40

A Comparative Implementation Study of MLOps Tools Through an Industrial Anomaly Detection Pipeline January, 2026, Vrije Universiteit Amsterdam

(5) Test model loading for inference: Verify inference capabilities. Result: When I loaded the test model with MLflow’s Python function wrapper using
mlflow.pyfunc.load_model(), it returned a ready-to-use callable model object for making predictions. The custom class loader also successfully
incorporated IDEKO’s feature engineering code into the model pipeline, which let me bundle preprocessing with the model. This was exactly what I
needed since our model required some feature computation before serving the input.

Dimension Criterion Rating Rationale

Usability Installation High Included with MLflow core. No additional setup or dependencies required.
Setup High Automatic integration with tracking. Two lines of code for model packaging.
Configuration High Works with defaults. Automatic environment and signature capture.
Ease of Use High Unified UI with tracking. Standard and custom loaders available.
Documentation High Clear examples for all major frameworks. Deployment patterns well-

documented.

Overall High Seamless extension of MLflow ecosystem

Functionality Completeness High Full model lifecycle: packaging, versioning, serving, deployment across plat-
forms.

Appropriateness High Perfect for standardized model packaging. Handles complex pipelines with
custom loaders.

Reliability High Signature validation prevents runtime errors. Environment specs ensure re-
producibility.

Overall High Comprehensive model management solution

Flexibility Platform Support High Works across all major cloud providers and local deployments.
Integration Ready High Native support for TensorFlow, PyTorch, scikit-learn, XGBoost, and custom

models.
Ease of Integration High Standard pyfunc interface plus custom loader option for complex scenarios.
Modularity Low Requires MLflow Tracking as foundation. Cannot be used independently.

Overall High Excellent portability despite MLflow dependency

Vitality Community High Core component of widely adopted MLflow platform.
Maturity High Stable API since MLflow 1.0. Production proven across industries.
Development High Active development as part of MLflow. Regular improvements.
Documentation High Comprehensive guides for all deployment scenarios.

Overall High Mature and well-supported component

A.13 MLflow Datasets
Stack: MLflow Component: Storage and Versioning

Developer: Linux Foundation License: Apache 2.0

Version: 2.21 Date Evaluated: June 26, 2025

Description: Dataset versioning and lineage tracking integrated with MLflow experiments. Links data snapshots to training runs and models, providing
automatic metadata capture including file path, content hash, schema, and record count for complete data provenance.

Systematic Test Plan:
(1) Install MLflow Datasets: Set up datasets component. Result: I found the MLflow Datasets library was included with the standard MLflow installation, so

I didn’t need any additional packages or configuration beyond the base setup. This was convenient since I already had MLflow installed.
(2) Launch MLflow server and access dashboard: Start server and verify UI. Result: Server startup remained identical to the MLflow Tracking setup I’d

already done. Using the MLflow Datasets API required me to explicitly import it in my Python scripts using import mlflow.data. Once I imported it,
MLflow Datasets’ functionality was immediately accessible through MLflow’s existing dashboard interface. I didn’t need to learn a new interface, which
was nice.

(3) Register IDEKO’s CSV dataset: Log the initial dataset. Result: Each time I called mlflow.data.log_dataset(), it successfully captured IDEKO’s
dataset along with automatically generated metadata including file path, content hash, schema, record count, and timestamp. Adding the log call was
trivial, just one extra line of code. The automatic metadata capture saved me from having to track this information manually.

(4) Test dataset versioning after applying modifications: Check version tracking. Result: After I modified the dataset by adding rows and adjusting
features, the subsequent log_dataset() call automatically created a new dataset version. The metadata clearly reflected all the changes I made. This
automatic versioning was helpful, though I noticed there were no built-in retention policies, which could become an issue with many versions.

(5) Verify that each training run correctly links to its specific dataset version: Test experiment association. Result: When I reran training scripts with
different dataset versions, MLflow correctly associated each experiment training run with the specific dataset version it used. This was clearly displayed
in MLflow’s UI. I could easily see which run used which dataset, which made debugging much easier.

(6) Explore dataset lineage in the UI: Check visualization capabilities. Result: The MLflow Datasets tab provided a comprehensive version comparison,
showing schema differences between versions and enabling lineage tracking from any model or run to its exact training dataset. However, I was

41

January, 2026, Vrije Universiteit Amsterdam Zakkarija Micallef

disappointed that I couldn’t visualize the actual dataset changes or search by feature name. The UI showed metadata but not the data itself, which would
have been useful. Still, being able to trace from a deployed model back to its exact training data snapshot was valuable for audit trails.

Dimension Criterion Rating Rationale

Usability Installation High Included with MLflow core. No additional setup required.
Setup High One API call per experiment adds complete dataset lineage.
Configuration High Automatic metadata capture. Works with default configurations.
Ease of Use High Dedicated UI views. Schema comparison and version tracking intuitive.
Documentation High Clear examples for common data formats. Integration patterns documented.

Overall High Minimal effort for maximum data provenance

Functionality Completeness Medium Excellent lineage but limited to MLflow ecosystem. No advanced data cata-
loging.

Appropriateness Medium Good for ML reproducibility but limited compared to dedicated data catalogs.
Reliability Medium Hash-based versioning works but lacks advanced features.

Overall Medium Adequate functionality within MLflow scope

Flexibility Platform Support High Works anywhere MLflow runs. Support for local files, S3, GCS, Azure.
Integration Ready Medium Tight MLflow integration. Limited compatibility with external data catalogs.
Ease of Integration Medium Single API call but requires MLflow ecosystem.
Modularity Low Cannot be used independently of MLflow. Requires MLflow Tracking.

Overall Medium Good within MLflow, limited outside

Vitality Community High Core component of MLflow. Benefits from platform’s widespread adoption.
Maturity High Stable component of mature MLflow platform.
Development High Active development as part of MLflow roadmap. Regular feature additions.
Documentation High Well-integrated with MLflow docs. Clear examples and best practices.

Overall High Strong backing as MLflow component

A.14 Kubeflow Model Registry
Stack: Kubeflow Component: Storage and Versioning

Developer: CNCF License: Apache 2.0

Description: Centralized model versioning and governance within Kubeflow. Intended to provide model lifecycle management similar to MLflow Model
Registry.

Note: Not available in evaluated Kubeflow distributions (DeployKF or Charmed Kubeflow). Documentation references component but no implementation
found. Evaluation could not be completed.

42

	Abstract
	1 Introduction
	2 Background
	2.1 DevOps
	2.2 MLOps
	2.3 Systematic Literature Review

	3 Design
	3.1 Research Questions
	3.2 Research Methodology: IDEKO Case Study
	3.2.1 Pilot Study

	3.3 Use Case Context: IDEKO
	3.3.1 Provided IDEKO Scripts

	3.4 Tool Selection and Rationale
	3.5 Evaluation Framework

	4 Results
	4.1 RQ1: Comparing MLOps Tools
	4.1.1 Data Versioning Tools
	4.1.2 Feature Store
	4.1.3 Orchestration

	4.1.3.1 Kubeflow Distributions
	4.1.3.2 Airflow vs Kubeflow Pipelines
	4.1.4 Experiment Tracking

	4.1.4.1 MLFlow Tracking vs MLMD
	4.1.5 Model Registry
	4.1.6 Dataset or Artifact Management
	4.1.7 Hyperparameter Optimization
	4.1.8 Model Serving

	4.2 RQ2: General Stack Evaluation
	4.2.1 MLflow Stack
	4.2.2 Kubeflow Stack

	5 Discussion
	5.1 Answering RQ1
	5.2 Answering RQ2
	5.3 Complexity Cost of Enterprise Features
	5.4 Documentation Quality
	5.5 Version Compatibility and Ecosystem cohesion

	6 Threats to Validity
	6.1 External Validity
	6.2 Internal Validity
	6.3 Construct Validity
	6.4 Conclusion Validity

	7 Related Work
	8 Conclusion
	References
	A Appendix - MLOps Tools Field Reports
	A.1 DVC (Data Version Control)
	A.2 LakeFS
	A.3 Feast (Feature Store)
	A.4 Apache Airflow
	A.5 Kubeflow Pipelines
	A.6 Optuna
	A.7 Katib
	A.8 MLflow Tracking
	A.9 ML Metadata (MLMD)
	A.10 MLflow Serving
	A.11 KServe
	A.12 MLflow Models
	A.13 MLflow Datasets
	A.14 Kubeflow Model Registry

