23
24
25
26
27
28
29

39
40
41
42
43
44

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle
Coverage, and Critical Insights

Zakkarija Micallef
Vrije Universiteit Amsterdam, The Netherlands
z.micallef@student.vu.nl

Abstract

Machine learning operations (MLOps) has become increasingly
critical as more organisations move machine learning models into
production. However, the growing landscape of MLOps solutions
has introduced complexity for practitioners trying to select appro-
priate tools. To investigate how and why these tools are adopted
in practice, this paper conducts a systematic review of academic
literature focused on MLOps tools. The analysis maps tools to
MLOps lifecycle stages to reveal their function, scope, and the chal-
lenges they are designed to address. It identifies usage trends and
synthesises reported benefits and limitations based on practical
implementations. The most commonly used components, accord-
ing to the findings, are orchestration frameworks, data versioning,
experiment tracking, and managed cloud platforms. No single tool
covers the entire lifecycle, so researchers often combine multiple
tools to build complete pipelines. This highlights the importance of
interoperability across MLOps tools in real-world MLOps pipelines.

Keywords

Systematic Literature Review, MLOps, tool taxonomy;, lifecycle map-
ping, tool adoption, MLflow, Kubeflow

1 Introduction

In recent years, Al has experienced a dramatic surge in popularity.
As more companies deploy Al solutions, they quickly discover
that specialised infrastructure is essential to support these new
capabilities. However, many Al engineers and data scientists lack
the software-deployment expertise of operations teams, especially
when it comes to MLOps tools [14].

Traditionally, an operations team is in charge of tasks such as
deployment and ongoing monitoring [16]. To reduce software time-
to-value and create stronger collaboration between development
and operations, software companies frequently use DevOps. De-
vOps is described as a culture that emphasises continuous collabo-
ration throughout the software lifecycle. It involves practices like
Continuous Integration, which involves frequent code merges, and
Continuous Deployment, which automates the release process to
ensure software remains deployable.

MLOps refers to the entire lifecycle of the machine-learning
process, bridging the gap between data, development, and oper-
ations [22]. MLOps extends beyond applying DevOps principles
to machine learning (ML). It involves continuous integration and
continuous deployment automation for ML pipelines, orchestra-
tion of ML workflows, versioning of data, models, and code to
ensure reproducibility, continuous training to keep models up to
date, metadata tracking for experiment auditability, and continuous
evaluation and performance monitoring.

Despite the growing interest in MLOps, existing reviews often
remain high-level, focusing primarily on listing tools, comparing
surface-level features, or distinguishing between open-source and
proprietary solutions. However, there is limited synthesis of how
these tools are actually used in practice [37]. Most studies fail to
capture the practical experiences of teams deploying real-world ML
systems. This gap in the literature limits the ability of researchers
and practitioners to make informed choices based on implementa-
tion outcomes rather than tool specifications alone. In this paper, we
explore the range of MLOps tools referenced in academic literature
and examine their real-world applications. While other papers inte-
grate general-purpose DevOps tools such as Docker, Kubernetes,
Git, and Jenkins with ML-specific tools, our SLR (Systematic Litera-
ture Review) focuses exclusively on MLOps native tools that are
developed specifically for machine learning workloads, excluding
general-purpose tools. We explore how practitioners use these tools
in their pipelines, why they select specific MLOps solutions, and
the advantages and drawbacks they face in real-world scenarios.
Through this analysis, we aim to provide a clear view of the current
MLOps landscape.

2 Related Work

MLOps remains a vague umbrella term, with its scope and impli-
cations still ambiguous for both researchers and practitioners. To
bring clarity, Kreuzberger et al. [22] conducted mixed-method re-
search, where they combined a literature review, a tool review, and
expert interviews to create a comprehensive description of MLOps
that we adopt as our definition of MLOps in Section 1. Their work
has become a de facto standard, widely cited by other papers [10]
[45] [48]. While Kreuzberger et al. [22] identified principles, tech-
nical components, and roles of MLOps, we focus solely on the
technical elements that recur across the literature: CI/CD pipelines
for training and deployment, workflow orchestration, feature-store
systems, model-training infrastructure, model registries, metadata
stores, serving components, and monitoring tools. A synthesis of
prior surveys shows that these components consistently form the
backbone of MLOps solutions [37] [45] [48] [10] [32]:

Data engineering

Version control

Hyperparameter tuning and experiment tracking
CI/CD pipelines for training and deployment
Workflow orchestration

Model deployment/serving

Automated testing and validation

Continuous performance monitoring

Varon Maya’s [26] argues that bringing DevOps principles into
ML pushes organisations toward pipeline-like architectures: NVIDIA
[27], Facebook [19], Spotify [1] and Google [18] each describe a

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Literature Review, May 2025, Vrije Universiteit Amsterdam

flow that runs from data collection and feature engineering through
training, validation and model serving, occasionally adding feed-
back loops that trigger continuous retraining. This structure clari-
fies ownership, lets every stage use specialised tooling and aligns
with CI/CD automation. However, higher-level concerns such as
process orchestration and configuration management are largely
unaddressed with this pipeline architecture, creating challenges
for reproducibility and maintainability in complex ML systems.
Our systematic literature review (SLR) adopts the same pipeline
perspective, evaluating MLOps tools stage by stage.

In modern software development environments, multiple lan-
guages and libraries are combined. To determine which languages,
frameworks, and runtimes each tool supports, Wazir et al. [45]
looked at 22 open-source catalogues and research publications.
Given the frequent combination of Python, Java, R, and other spe-
cialised libraries, their findings highlight the need for MLOps plat-
forms to continue being language agnostic. Building on this, Ruf et
al. [38] conducted interviews and real-world trials to produce a de-
tailed feature matrix of API bindings and integration hooks offered
by each candidate tool. They show that lacking support for lan-
guages like R or Java can hinder collaboration between operations
and data science teams. Consequently, they recommend conducting
several iterative selection rounds before beginning work, ensuring
all departments agree on a unified toolchain.

In Recupito et als review [37], thirteen prominent MLOps plat-
forms were mapped to the stage of the MLOps pipeline they support:
data management, model training, CI/CD, monitoring, and so on.
Their comparison shows that no single product spans the entire
lifecycle, so practitioners routinely assemble multi-tool pipelines.
Multiple studies [37] [38] [45] highlight the importance of evalu-
ating not just each tool’s individual strengths but also how well
they interoperate with other tools and the dependencies they intro-
duce. Interestingly, nearly 50% of the sources in Recupito et al. [37]
review are blog posts, underscoring how much MLOps expertise
circulates through informal channels rather than peer-reviewed
papers. While several recent papers embrace a multivocal approach
that blends academic and practitioner sources, our decision to focus
solely on academic papers means that some practitioner findings
may be missed.

Our SLR compares tools by the benefits and limitations that paper
authors explicitly report from their practical experience, in contrast
to the majority of previous reviews that compare tools based on
claimed features listed on the tool developer’s websites or their
official blogs. This method provides a more accurate understanding
of the practical experience and shortcomings of MLOps tools.

3 Study Design

3.1 Research Goal

This study presents a clear landscape of MLOps tools through a SLR
of academic papers. It examines the platforms and libraries adopted
by practitioners and analyzes which stages each tool addresses
to reveal its function, scope, and the challenges it is designed for.
The review also investigates the factors influencing tool adoption,
offering insights into the technologies most relevant to current
MLOps practices and how they integrate into real-world workflows.

Zakkarija Micallef

3.2 Research Questions

3.2.1 RQI: Which tools employed in MLOps workflows are most
frequently reported in academic literature? Tools with significant
popularity frequently benefit from strong community support, ex-
tensive documentation, and rich integration possibilities, making
them preferred candidates for further exploration. They give a great
perspective on how many practitioners interact with MLOps. The
goal of this research question is to determine which tools are most
often used in the literature. We can identify which tools are most
popular by looking at how frequently they are integrated.

3.22 RQ2: Which stages of the MLOps lifecycle do these tools cover
in the use cases reported in the academic literature? ML pipelines are
made up of several steps, ranging from data processing and model
training to model deployment and continuous monitoring. MLOps
tools rarely attempt to cover all of these stages comprehensively.
They generally specialise in a single or subset of these stages. Ana-
lyzing which stages each tool addresses reveals its function, scope
and challenges it is designed for. This understanding is crucial since,
as mentioned before, engineers and researchers tend to combine
multiple tools to get their final desired pipeline.

3.2.3 RQ3: What are the reported benefits and limitations of the
MLOps tool? MLOps tools offer a variety of features designed to
meet the diverse needs of the user. Following the analysis of existing
literature and documented user experiences, we examine common
trends in the advantages and limitations of various MLOps tools.

3.3 Pilot Study

Before starting the full review, we ran a pilot study with just the
first ten papers from the Google Scholar results, following Kitchen-
ham’s SLR guidelines [21]. A pilot study is important to validate our
methodology and ensure the consistency and reliability of selection
and extraction before full deployment. We subjected the selected
studies to the full review protocol. The pilot revealed that some
inclusion and exclusion criteria were incorrect, so we refined the
set of extraction fields by removing unnecessary items and adding
missing elements. We adjusted the search string, updated the in-
clusion rules, and modified the extraction spreadsheet. The study
design presented below is the final version after all of those tweaks
were applied.

3.4 Initial search

In February 2025, we conducted our literature search on Google
Scholar. We first identified relevant keywords and synonyms for
the MLOps literature. The search-term selection process involved
several iterations of testing various keywords in Google Scholar
and assessing whether the top results aligned with MLOps tooling
and lifecycle studies. The finalised search string is as follows:

Google Scholar Search String

("MLOps” OR "machine learning operations") AND ("tool"
OR "application” OR "framework" OR "platform" OR
"pipelines”) AND ("comparison” OR "evaluation” OR
"benchmark" OR "analysis" OR "empirical")

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights

The initial query returned 9 100 records; however, to keep the
review scope manageable and respect our time constraints, we
screened only the first ten pages of Google Scholar results and
reviewed 96 papers.

3.5 Application of Selection Criteria

For a paper to qualify as a primary study, it must satisfy all inclusion
criteria and none of the exclusion criteria.
Inclusion Criteria:

e I1: Papers that either analyse/compar e MLOps tools or
describe the development/implementation of MLOps tools,
frameworks, or pipelines.

e 12 Papers published in the last five years to ensure relevance
(i-e., 2020 and later)

Exclusion Criteria:

o E1: Papers only describing applications or projects using
an MLOps tool without detailed tool analysis.

e E2: Papers discussing MLOps as a concept/architecture or
highlighting the benefits of the MLOps culture.

e E3: The study must present original primary research; ex-
cluded are secondary studies such as literature reviews or
surveys.

e E4: Non-English literature.

o E5: The full text of the paper is not available for our insti-
tution.

The selection criteria 12, E4, and E5 are standard criteria for SLRs.
Criteria I1, E1, E2, and E3 ensure we exclude papers outside the
scope of this review (those lacking original primary research or
detailed analysis/development of MLOps tools) and thus focus only
on studies that directly contribute to our research questions.

3.6 Snowballing

We applied both backward and forward snowballing to expand the
results obtained through our initial search. Our snowballing process
follows the approach suggested by Wohlin et al. [46]. To perform
backward snowballing, we first reviewed the reference sections of
our initial set of 96 papers by manually assessing titles to determine
their relevance. If a title aligned with our research scope, we further
examined the corresponding paper’s abstract. Through this process,
we identified four additional papers that met our inclusion criteria.
On the other hand, during forward snowballing, we used Google
Scholar to find studies that cite our initial set of papers. From this
process, seven additional relevant papers were identified.

In both cases of forward and backward snowballing, we applied
the same selection criteria and data extraction procedures (3.5, 3.7)
as those used for the initial set of papers. We limited the snowballing
process to a single round since further iterations yielded minimal
additional relevant papers beyond those identified initially.

Figure 1 illustrates the complete selection process, from initial
paper retrieval, through screening and inclusion, to snowballing.

3.7 Data Extraction

In this phase of our study, we performed a systematic analysis of the
primary studies to extract data related to our research questions. As
detailed in subsection 3.3, our initial pilot study helped us refine the

Literature Review, May 2025, Vrije Universiteit Amsterdam

Google Scholar Search
(n=9100)

Record Identified
(n=96)

Screening and Filtering

Excluded
Articles

Included
Articles

Total Articles
(n=41)

Figure 1: Flow diagram showing selection process record
retrieval, screening, inclusion, and citation snowballing steps
for the MLOps literature review

data extraction strategy. For each research question, we extracted
a predetermined set of information from every primary research
paper and recorded it in spreadsheet. With respect to RQ1, we
identified tools that were actively implemented, excluding tools
that were only mentioned. This distinction enabled us to evaluate
the researchers’ hands-on experiences with the tools. As for RQ2, we
noted the tools’ specific use cases mentioned in the paper. Finally,
for RQ3, we gathered information on the reported benefits and
limitations of each tool by analysing the justifications for their
selection and the challenges encountered during their application.
Table 1 lists the data extraction fields used.

Table 1: Data extraction fields

Field Description

Name Name of the MLOps tool

Uses Practitioner use cases

Pipeline stage covered Stage(s) of the MLOps lifecycle addressed
Paper Citation of the academic study

Benefits Reported benefits of the tool

Limitations Reported limitations or challenges

Notes Additional observations or context

3.8 Data Synthesis

3.8.1 RQI: Which tools employed in MLOps workflows are most
frequently reported in academic literature? In this stage of our study,
we synthesise the data extracted from the selected primary research
papers to address our research questions. To represent our findings
for RQ1, we constructed Figure 2, a frequency graph that lists each

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

Literature Review, May 2025, Vrije Universiteit Amsterdam

tool alongside the number of times it was used in the reviewed lit-
erature. This graph provides a quantitative measure of each MLOps
tool’s popularity, further details and interpretation are presented
in the Results and Discussion sections.

3.8.2 RQ2 To address RQ2, we categorised the tools based on
their respective use cases, according to the MLOps components as
defined by Najafabadi et al. [32]. In this section, we list the selected
subset of the original components whilst adapting their names
and responsibilities to our context. We have also introduced a new
component, Visualisations, to better capture gaps in the existing
architecture.

Table 2 summarises the MLOps lifecycle categories that emerged
from the primary studies discussed in this section.

3.8.3 RQ3 To answer RQ3 we applied a descriptive synthesis,
which means we looked for patterns in descriptions rather com-
bining numerical results. First, we copied every sentence that men-
tioned a benefit or limitation of a tool into a spreadsheet. We then
grouped together statements that conveyed the same idea, allowing
us to identify benefits and limitations that appeared across several
studies, as well as those mentioned only once. Finally, we compiled
a table for every tool that lists these combined benefits and limita-
tions so readers can see at a glance what the literature agrees on
for each tool. This analysis helped us capture the context of tool
selection, including the rationale behind their adoption and the
challenges associated with their use.

3.9 Study Replicability

To ensure full replicability of our review, we have made a public
Zenodo repository [28] with a spreadsheet that documents every
step of the study. It comprises four sheets:

(1) Paper Selection — the complete set of Google Scholar
search results, showing whether each paper was included
or excluded from our review and the exact criterion applied.

(2) Selected Papers — all papers that passed screening, indi-
cating whether they came from the primary search or from
forward/backward snowballing, along with key metadata
(author, publication year, and so on).

(3) Extraction - the raw data taken from each selected paper:
tool names, quoted passages, reported benefits or limita-
tions, and possible dependencies or integrations.

(4) Synthesis — a consolidated view that maps every extracted
tool to the relevant component of the MLOps architecture
as well as summaries of the common advantages and draw-
backs. Key synthesis results are presented in this paper,
while the full mapping is available in the supplementary
material [28].

Researchers can follow the study design and the data in the
provided sheets to reproduce our search, screening, extraction, and
synthesis processes or to extend the analysis.

3.10 Threats to Validity

In this section, we follow the threat classification schemes for ex-
periment validity described by Ampatzoglou et al. [3] and outline
the threats that may affect the validity of our research.

Zakkarija Micallef

Table 2: MLOps lifecycle categories observed in the primary

studies
Component Responsibility
Orchestrator Provides system-wide orchestration and

Raw Data Store

Data Preprocessor

Dataset
tory
Feature Store

Reposi-

schedules multiple models while balancing
throughput and latency.

Holds raw source data; needs specialised ver-
sioning tools because datasets exceed typical
Git size limits.

Transforms, cleans, and validates data before
it becomes training input.

Stores and versions datasets; relies on large-
file platforms.

Computes, stores, and serves reusable fea-
tures with low latency.

Artefact Reposi- Keeps packaged or containerised ML compo-

tory nents that include a model.

ML Metadata Tracks training metadata for experiment

Repository tracking and model performance.

Code Repository Versions source code, configuration files, and
related artefacts.

Model Repository ~ Versions trained models together with basic

ML Training

metadata such as version numbers.
Automates continuous model training at run-

Pipeline (Online) time in production.

ML Experiment Supports manual experimentation and train-

Pipeline (Offline) ing during design time.

MLOps User Inter- Enables interaction between the MLOps team

action Manager and the platform.

ML Pipeline Editor Builds, tests, and packages pipeline code into
containers or similar environments.

Model Deployer Deploys a trained model and its dependencies
to production.

Model Evaluator Measures and assesses model performance.

Runtime Model Continuously watches serving performance

Monitor and infrastructure metrics.

Visualisation Presents dashboards and graphs for experi-
ments, metrics, and system status.

End-to-End Covers the full ML workflow from data inges-

Managed End-to-
End

tion to inference, though most tools still leave
gaps.

Provides an end-to-end pipeline fully man-
aged by the platform, automating infrastruc-
ture, execution, and monitoring; often re-
quires auxiliary services for complete cover-
age.

3.10.1

External validity External validity relates to the generalis-

ability of our systematic literature review’s findings. For our pri-
mary studies to accurately represent the MLOps field and draw
correct conclusions, it is essential that these studies reflect the di-
verse MLOps landscape. One threat to generalisability is that the
limitations reported in the literature may be based on older versions
of MLOps tools, thereby inaccurately representing their current

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

529
530

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights

state. Such limitations might have already been addressed by the
developer and thus may no longer hold.

Another threat comes from the sheer number of results returned
by Google Scholar. Its proprietary relevance ranking does act as
a partial mitigation by prioritizing influential papers first. Never-
theless, we reviewed only the first ten result pages, covering 96
papers, so some relevant studies may have been missed and this
could introduce selection bias. A broader search by screening more
Google Scholar pages would mitigate this limitation.

3.10.2 Internal validity Internal validity examines whether the
study’s design and execution provide a confident basis for linking
causes with effects. A key threat in our review is the process of
selecting appropriate papers and formulating an exhaustive set of
search terms. Vital studies might be missed if the search terms are
not thorough, which could introduce bias. In order to mitigate this
threat, we pre-identified a number of key papers that needed to be
on our final list of papers.

Another threat concerns our tool-component heatmap (Figure
3). We can map only the capabilities that authors explicitly describe,
so the heatmap may miss components that a tool supports but were
not used in the included studies. When an author employs only
a subset of the tools capabilities, any unmentioned components
are left out, which makes the mapping non-exhaustive and might
under-represent the true scope of certain tools.

3.10.3 Construct validity Construct validity concerns how well
our measures and constructs align with the theoretical concepts we
intend to study. A threat here is inherent in the source literature:
many academic papers emphasise implementing MLOps pipelines
or addressing broader issues rather than critically evaluating the
tools themselves. This tendency often leads to detailed reporting on
the benefits while underreporting limitations, which may result in
conclusions that do not accurately capture the tool’s effectiveness.

3.10.4 Conclusion validity Conclusion validity focuses on the ac-
curacy of the deductions generated from our data analysis. Our
conclusions, which are based on frequency counts, categorisation
mappings, and feature evaluations, are meant to be rational. How-
ever, verifying that the data analysis procedures are sound and
executed correctly is crucial to confirming the validity of our find-
ings. Finally, the extraction and synthesis process was not reviewed
by a third party, which could introduce self-bias.

4 Results

In this section, we present the outcomes of our SLR structured
by three research questions. Section 4.1 (RQ1) reports the most
frequently mentioned MLOps tools (Figure 2); Section 4.2 (RQ2)
examines tool capabilities across pipeline stages and categories
(Figures 3 and 4); and Section 4.3 (RQ3) synthesizes reported ben-
efits and limitations (Tables 3—10). Further discussion appears in
Section 5.

Literature Review, May 2025, Vrije Universiteit Amsterdam

Top 10 MLOps Tools by Mention Count

MLFlow

pvc

Kubeflow Pipelines
SageMaker

TensorFlow

Tool Name

Google Vertex Al
Dagshub
Evidently

KServe

AzureML

[2 4 6 8 10 12 14 16
Count

Figure 2: Top 10 MLOps tools ranked by number of mentions
in primary studies

4.1 RQ1: Which tools employed in MLOps
workflows are most frequently reported in
academic literature?

Our first research question aims to identify the most widely used
MLOps tools based on evidence from academic studies. In order to
determine the prevalent tools, Figure 2 presents a bar graph show-
casing tool usage based on our primary data sources. As explained
previously, each tool had to be both described in the literature
and practically applied by the authors for it to be included in our
study. A significant portion of the literature focused on authors re-
searching multiple tools in order to implement an MLOps pipeline.
In these studies, the literature review section typically describes
various MLOps tools and evaluates them based on the features
offered. In our analysis, we only listed the tools that were actually
implemented in their final pipeline. As shown in Figure 2, MLflow
emerged as the most commonly implemented tool, appearing 16
times, followed by DVC and Kubeflow Pipelines, each appearing 10
times. Further interpretation is provided in the discussion section.

4.2 RQ2: Which stages of the MLOps lifecycle
do these tools cover in the use cases
reported in the academic literature?

MLOps pipelines encompass a range of stages, including data in-
gestion, pre-processing, model development, training, validation,
deployment, and ongoing monitoring. A heatmap (Figure 3) was
created to visualise what component(s) each extracted MLOps tool
fulfils, along with the frequency of each tool’s implementation
across the reviewed studies. Analysing the stages supported by
each tool revealed common areas of focus among MLOps solu-
tions. Overall, very few tools cover the entire pipeline, as most
specialise in one or more phases. Since MLOps tools can address
several components, authors may discuss only a subset. As a result,
the figure may omit certain stages a tool could cover, making our
assessment of functionality incomplete. Throughout this paper we
use the terms “stage”, “phase”, and “component” interchangeably
to refer to one functional step in that lifecycle.

Furthermore, Figure 4 presents a bar graph of MLOps tool counts
grouped by broad categories. These categories are adapted from

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

Literature Review, May 2025, Vrije Universiteit Amsterdam

Zakkarija Micallef

MLOps Tools x Pipeline Component Categories (mention count)

Airflow -

Argo Workflows -

BentoML -

CML -

ClearML -

DVC ¢

Dagshub -

Evidently -

GTO -

Google Vertex Al -

Gradio -
Hyperopt -
KServe -
Katib -

Kubeflow Pipelines -

MLflow -

tool_name

MetaTool -
MinlO -
Neptune.ai -
Netron -
Pachyderm -
Polyaxon -
Prefect Core -
SageMaker - -
Seldon Core -
Streamlit -
TensorBoard -
TensorFlow -
TensorFlow Extended -
TensorFlow Serving -
Weights & Biases -

ZenML -

-15
-14
-13

112

=11

Mention Count

Figure 3: Heatmap illustrating MLOps tools mapped across different MLOps pipeline phases, showing which phase(s) each tool
supports. Colour intensity represents the number of times each tool was implemented.

the taxonomy proposed by Najafabadi et al., who originally defined
six groups to classify MLOps components. To better reflect our
corpus, we both added two new groups—End-to-End and Managed

End-to-End—and removed unused groups such as Data Curation.

The full set of categories is:

End-to-End

Managed End-to-End

Storage and Versioning

Infrastructure and Supporting Services
Inference

ML Training

This categorization is primarily intended to facilitate the or-
ganization and presentation of our findings in this paper. While
individual tools may fall under multiple MLOps components, we as-
sign each tool to a single category to provide a clear and high-level
overview of the MLOps landscape.

4.3 RQ3: What are the reported benefits and
limitations of the MLOps tools?

The following Tables 3-10 present a synthesis of the reported ben-
efits and limitations of each MLOps tool identified in our review,
thereby addressing Research Question 3.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846

859
860
861
862
863

864

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights

Total Tool Usage per Category

Total Usage Count

Category

Figure 4: MLOps tool count grouped by category

These tables are grouped according to the categories defined in
Section 4.2 (End-to-End, Managed End-to-End, Storage and Version-
ing, Infrastructure and Supporting Services, Inference, ML Train-
ing), which allows for straightforward comparison of the practical
considerations involved in tool selection and implementation. Each
table organises tools by one of these categories.

These summaries are drawn from direct quotations in the source
literature, capturing the most common insights authors reported
from academic projects or industrial deployments. The complete
set of quotations, tools, and source papers is available in the accom-
panying supplementary sheets.

The tables are followed by Section 5, where we delve deeper into
the implications of these findings.

4.3.1 Infrastructure and Supporting Services

Apache Airflow is an open-source platform for orchestrating
production workflows and data pipelines [50].

Argo Workflow Argo Workflow is a container-native workflow
engine for orchestrating parallel jobs on Kubernetes [30]. By com-
bining Argo Events for webhook-triggered workflows and Argo
Workflow for execution, developers can automate the full ML lifecy-
cle in a reproducible, scalable, and hands-off manner. This includes
training, evaluation, and deployment. While production environ-
ments can benefit from such pipelines for mature, production-ready
teams, it is not recommended to incorporate such an environment
in the early stages of ML services or businesses [30].

Kubeflow Pipelines handles managing and orchestrating con-
tainerised workloads [15] while taking care of model training, de-
ployment, and coordination [24]. Since it runs on top of Kubernetes,
it lets users codify preprocessing, training, and deployment steps in
a single UI and execute many pipelines in parallel. Because every
component ships as a Kubernetes resource, the same pipeline runs
on-prem or in any managed Kubernetes service. It also has auto-
scaling pods, notebook sessions provided by Jupyter, experiment
tracking, hyperparameter tuning, and pluggable serving (Kube-
flow’s own KServe or other solutions such as Seldon Core), which
all sit behind the central dashboard.

Literature Review, May 2025, Vrije Universiteit Amsterdam

Prefect Core is a pipeline orchestrator with a modern Python
API that keeps code readable and flexible when workflows are
highly dynamic [11].

ZenML links the orchestration layer with an artefact store so
that a stack can swap orchestration, or any other component, with-
out rewriting user code [5].

CML enables CI/CD for ML projects. It wires continuous inte-
gration to ML experiments, tracking changes and auto-generating
metric reports [35].

Gradio enables fast creation of interactive web interfaces for
model demos and evaluation without touching HTML, CSS, or
JavaScript [15].

TensorBoard is TensorFlow’s official visualisation toolkit, offer-
ing interactive exploration of computation graphs, layer structures,
and distributions of weights and biases through histograms. Ten-
sorBoard also provides real-time plotting of training metrics such
as loss and accuracy over time [47].

4.3.2 Managed End-to-End

AzureML is a managed end-to-end service; users still provision
the workspace, storage, networking, and container registry either
interactively or through infrastructure-as-code [29].

AWS SageMaker is Amazon’s cloud platform for building, train-
ing, tuning, and deploying models in a hosted production environ-
ment [34].

ClearML provides semi-automated experimental run tracking
and auditing, capturing comprehensive metadata, parameters, and
metrics across popular Data Science tools. It relies on a dedicated
central web server underpinned by a MongoDB database, an Elastic-
search deployment, and cloud object storage for artefact archiving,
enabling end-to-end traceability and auditability of experiments
[40].

4.3.3 End-to-End

MLflow is an end-to-end tool made of multiple modules [9]
which was initially started as an open-source platform to provide
comprehensive experiment tracking capabilities [25][31][5][44].
It has grown to cover most of the MLOps pipeline through the
inclusion of the following components. The MLFlow Tracking com-
ponent records parameters, metrics, and artefacts for every run
[40], ensuring a complete workflow history. MLFlow Projects encap-
sulate data science code and dependencies, enabling reproducible
execution across diverse environments. MLflow pipeline involves
processing, cleaning, transforming, training models, and evaluating
them, ensuring large-scale ML model deployment. MLFlow Models
then offers a standardised structure for packaging machine learning
models and facilitates seamless deployment in various serving in-
frastructures [9]. Finally, MLFlow Registry serves as a unified model
store, providing versioning, annotation, stage transitions, and the
promotion of specific model versions to “Production” for batch
or real-time inference [31][39]. Autologging further streamlines
experiments by automatically capturing parameters and metrics
from supported ML libraries [5].

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

945
946
947
948
949

959

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

1002

Literature Review, May 2025, Vrije Universiteit Amsterdam

Neptune.ai positions itself as a complete platform that spans
data versioning, testing, deployment, and monitoring [43].

Pachyderm offers GUI-based notebook services, experiment
tracking, and hyperparameter tuning [23].

Polyaxon is an open-source, Kubernetes-native end-to-end MLOps

platform focused on experiment tracking, visualisation, parallel
executions and hyperparameter optimisation. Its main focus is
parallelisable experiment tracking, where it attempts to provide
computationally efficient mechanisms for running and interpreting
parallel ML experiments at scale. While Polyaxon’s core and exper-
imentation tools are open source, its automation and management
features are not [23].

TensorFlow Extended (TFX) offers a production-grade pipeline
implementation for TensorFlow models [20].

Google Vertex Al is part of GCP, merging AutoML and AI Plat-
form behind one AP, client library, and UI [41][29]. The Workbench
offers Jupyter notebooks [8] and AutoML streamlines training, ex-
periment tracking, and metadata management. A Model Registry
manages versions for online or batch prediction, while the Pipeline
view visualises step dependencies, integrated logging, and moni-
toring track performance over time.

4.3.4 ML Training

Katib is part of Kubeflow. It automates hyperparameter tuning
across frameworks including TensorFlow, MXNet, PyTorch, and
XGBoost [17].

4.3.5 Storage and Versioning

Weights & Biases is cited as an ML metadata repository, yet
the sources offer no elaboration [5].

Dagshub hosts data repositories and models for collaborative
versioning. Some authors store all pipeline outputs remotely in it

[31][2].

DVC extends Git to manage large datasets and model files, en-
abling version control of large data alongside code [31] [4] [25]
[9] [36] [7]1[20][15]. Consequently, its Git-like workflow simplifies
adoption for users familiar with Git [4]. DVC’s pipeline feature
modularizes data processing into stages with explicit input-output
dependencies and parameterisation, ensuring reproducibility, au-
tomation, and reusability across projects [4]. It also supports ex-
periment tracking and storing metadata within Git, while actual
data resides in DVC storage, with metadata files orchestrating data
retrieval [35].

Feast provides both offline and online feature storage, keeping
historical as well as live data in sync [44]. One paper mislabels it
as a performance monitoring tool [47].

GTO is Iterative’s GitOps-based model registry. It eliminates
the need for separate servers or databases by leveraging Git and
DVC repositories and provides streamlined support for promoting
models through designated repository branches and stages [35].

MinlO is an S3-compatible object store that keeps artefacts and
metadata from ZenML and MLflow but can host any data [5].

Zakkarija Micallef

4.3.6 Inference

Metaflow is a framework for creating and executing data sci-
ence workflows in local environments and scaling them to the cloud
with ease [40].

KServe originates from the Kubeflow ecosystem and wraps
models as web services on Knative/Istio. This results in autoscaling,
isolation, and an event-driven path to downstream monitoring
[24][20][17].

BentoML is a model serving tool that bundles a trained model
and its dependencies into a production-ready service [40][39].

Seldon Core is a model deployment tool that exposes models
as web services [11] with robust support for Kubernetes [24].

Evidently is an open-source model monitoring library that gen-
erates predefined monitoring reports with a few lines of code. It can
automatically detect drift in input data, target values, and predic-
tions, and supports multi-model dashboards by calculating metrics
across multiple models with a single monitor [2][44][24].

Streamlit provides a quick route to deploy ML applications
through a simple Python interface [2].

5 Discussion

The following subsections are organised around our three research
questions and draw directly on the synthesis captured in Tables
1-8. Each benefit extracted from the studies is labelled B1, B2, ...
and each limitation as L1, L2 and so on. Thus, a reference such
as B31 sends you to the 31st benefit row, while L17 points to the
17th limitation. To examine the supporting evidence, consult the
corresponding rows in Tables 1-8, where the summarised finding
and the primary paper that reported it are.

5.1 RQ1 - Which tools employed in MLOps
workflows are most frequently reported in
academic literature?

Across the primary studies, four tools stand out: MLflow, DVC,
Kubeflow Pipelines, and AWS SageMaker as shown in Figure 2.
The first three are fully open-source, while AWS SageMaker is a
proprietary cloud service. This divide reflects a familiar compromise
in MLOps practice: practitioners prefer community-maintained
tools for tasks like experiment tracking and data versioning but
often turn to commercial platforms when they need infrastructure
that scales quickly and comes with operational support.

Both MLflow and Kubeflow are classified as end-to-end plat-
forms, providing experiment tracking, model packaging, and de-
ployment in one bundle. However, their design philosophies diverge
significantly. MLflow focuses on accessibility: it is easy to use, has
a straightforward web U, thorough and substantial documentation,
wide storage-backend support, and a lively community (B24-B30).
Kubeflow takes a different approach. It is rooted in Kubernetes and
focuses more on customisability with fine-grained control, modular
components, and automatic scaling (B3-B8). However, it demands
a tougher setup and steeper operational know-how (L3-L5). The
fact that both tools top the frequency chart suggests that while

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

1140

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights

some users prefer easy-to-use tools and others value customisable
options, there is room for both approaches to succeed.

DVC is a notable outlier among the most cited tools, as it tackles
only a single stage of the MLOps life cycle, data storage and ver-
sioning, and yet it appears almost as often as the full end-to-end
platforms. Synchronising large data artefacts with code has been
a historic pain point in ML. Authors repeatedly select DVC for its
easy-to-use Git-like interface (B45) as well as pipeline caching and
serverless architecture. A recurring pairing was the adoption of Git
for code with DVC for large data because of Git’s size limits. Git LFS
was meant to alleviate this struggle, but unlike Git LFS, DVC needs
no extra server, a difference reviewers flag as decisive. L29-130)
confirm that none of the other surveyed tools offer a comparable
alternative.

Another reason for MLflow’s popularity is that, even though it is
open-source, it remains a mature, well-established platform trusted
by leading companies and backed by both a strong community and
Databricks (B26). Its popularity feeds a loop: more users attract more
contributors, the codebase improves, and the project becomes even
more appealing, which leads the community to further grow. The
same holds true for Kubeflow (B4). Some projects, however, are less
attractive because of their "uncertain vitality”, meaning that their
long-term health is harder to predict; Polyaxon, for instance, relies
on a comparatively small contributor base (L27). Lower adoption
means fewer contributors, slow progress, and even less visibility;
a feedback loop in reverse that keeps new users away. In practice,
the presence of an active maintainer community weighs heavily
when choosing a tool for the long haul (B26, B4). MLflow does
not just entice developers who want a self-hosted solution, since
developers who prefer to skip infrastructure work can opt for a
managed MLflow provided by Databricks, which sidesteps the need
to run and maintain a separate tool (L16).

The widespread use of AWS SageMaker highlights the ongoing
significance of managed services (Figure 2). Managed MLOps plat-
forms such as SageMaker remain popular because they include a
wide array of pre-integrated pipeline components, such as a fea-
ture store, model registry, and CI/CD templates (B17). Companies
accept the subscription fee and the inherent risks of vendor lock-in
because the alternatives present significant challenges and costs
(L10, L12, L9, L15). A managed service hides the heavy work of
provisioning and securing compute, storage, and networking, and it
scales on demand (B18, B15, B16, B23). The same attraction applies
to the managed stacks from Azure ML (B14) and Google Cloud
Vertex Al (B22). Organisations that are unwilling to rely on a third-
party cloud provider often choose to build an in-house pipeline
from open-source projects such as MLflow for experiment tracking,
Kubeflow for orchestration, and DVC for data versioning. How-
ever, this option demands far more integration effort and long-term
maintenance and may be better suited to larger teams and more
mature projects (L3, L29, L19, L16).

5.2 RQ2 - Which stages of the MLOps lifecycle
do these tools cover in the reported use
cases?

Mapping each tool to the taxonomy defined in Section 2 reveals
that no single solution addresses the entire ML lifecycle.. However,

Literature Review, May 2025, Vrije Universiteit Amsterdam

this is more due to what the papers mention than what the product
definitively offers. Kubeflow excels at orchestration (B4), MLflow
at experiment tracking (B28), while DVC and Feast handle data and
feature management, respectively (B45, B57).

AWS SageMaker bundles a model registry, feature store, and
deployment tools, yet teams still turn to third-party services for
granular security and local runs (L10-L12). The component that
offers the least coverage is in feature stores and runtime monitoring;
outside of Feast and Evidently, non-managed options are almost
nonexistent (Tables 6 and 7). Consequently, multi-tool pipelines are
the norm, underpinning the importance of effective tool integration.

While classifying tools, we found one component that did not fit
cleanly into Najafabadi et al’s [32] component architecture: visu-
alisation dashboards such as TensorBoard, Weights & Biases, and
Gradio. The closest existing component was Runtime Monitoring,
which does not really capture their purpose, so we introduced a
dedicated visualisation component instead.

Across all reviewed papers, the ML Metadata Repository (Experiment-

tracking) stage is addressed the most. This dominance is caused
by the ubiquity of MLflow, making it a default choice for an exper-
iment tracking tool that is open source. Managed solutions such
as SageMaker and Azure ML (B17, B16) further contribute to its
widespread adoption. Reliable metadata is essential for reproducibil-
ity, auditability, and model evaluation; consequently, practitioners
consistently prioritise this component.

Yet orchestration tools sit a close second: they are the "glue" that
binds data prep, training, and deployment into a runnable pipeline,
so virtually every study that examines end-to-end workflows also
highlights orchestrators such as Kubeflow, Argo, or similar sched-
ulers.

5.3 RQ3 - What are the claimed benefits and
limitations of the MLOps tool?

5.3.1 Security and Managed Platform Trade-offs MLflow lacks auto-
matic data versioning (L17), which explains why many studies pair
it with DVC (B45-B49). It is also missing role-based access control
(L19). In contrast, AWS SageMaker covers that gap through IAM in-
tegration (B19). A well-established trade-off emerges: open-source
tools need extra engineering to meet enterprise-grade security,
while cloud platforms shift that work to the provider at the cost
of vendor lock-in. Even then, the cloud does not guarantee full
coverage. For example, Google’s Vertex Al still trails Azure ML and
SageMaker on security, user control, and governance despite tying
you to Google’s stack.

5.3.2 Post-deployment Monitoring Evidently is the only tool that
comes with a drift detection feature out of the box (B67-B71), and
it works only for tabular data (L37). The limited findings indicate
that post-deployment observability is still an emerging component
of the ecosystem.

5.3.3 Prerequisite Knowledge A common limitation noted among
tools is the required prerequisite knowledge. Pachyderm requires
Helm and cloud-storage expertise (L23), while both Kubeflow and
Argo Workflows demand solid Kubernetes and containerisation
experience (L3, L7-L8). Several other services, including Feast’s SDK
(L34), Weights & Biases’ client code (L33), Neptune’s Python API

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
7
1172
1173
1174
1175
1176
177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

Literature Review, May 2025, Vrije Universiteit Amsterdam

(L22) and SageMaker’s SDK (L11), call for advanced programming
skills. These findings show that tool comparison should not focus
solely on a tool’s features and limitations, but it must also consider
the skills a team possesses.

5.3.4 Integration and Flexibility Easy integration and language
agnosticism are among the most frequently praised benefits. Or-
chestrators such as Kubeflow Pipelines are applauded for both their
cloud-agnostic Kubernetes foundation and their seamless hooks
into TensorFlow Extended (B3, B6), while managed stacks win
favour largely because of the way they slot into their parent ecosys-
tems—AWS SageMaker’s tight coupling with IAM and the rest of the
AWS suite being a prime example (B19). At the experiment-tracking
layer, MLflow extends this integrative spirit through container-
friendly, self-hosted deployments and pluggable back-end stores
that work just as well with S3, Azure Blob, on-prem NFS, or SQL-
compatible databases (B25, B30). Flexibility in storage backends is
also demonstrated by DVC’s remote options (B49) and MLflow’s
broad object-store support (B30). TFX is widely appreciated for its
portability, with pipelines that can run seamlessly across multiple
orchestrators rather than being locked to a single workflow engine
(B41). Finally, inference services such as BentoML embrace frame-
work diversity by supporting TensorFlow, PyTorch, Keras, XGBoost,
and more out of the box (B61). Taken together, these examples show
that the community consistently rewards tools that can drop into
existing tech stacks without forcing a wholesale rewrite in a particu-
lar language, framework, or cloud. In contrast, the lack of flexibility
is listed as a drawback by reviewers, specifically in TensorBoard
and TFX which tie users to the TensorFlow stack (L39, L28).

5.3.5 User Interfaces and Visualization Finally, visual dashboards
and Uls are widely appreciated. Kubeflow’s central UI (B7), Vertex
AT’s pipeline view (B22), MLflow’s experiment board (B24) and
Pachyderm’s web console (B35) are all reported as benefits, as they
improve ease of use.

6 Conclusion

This review set out to identify which MLOps-native tools appear
most frequently in academic work and to understand the reasons
for their uptake. A structured Google Scholar search, followed by
manual screening, filtered 96 papers to 41 selected studies which
were extracted and synthesised in a systematic, structured manner.

Our review confirms a clear pattern in recent MLOps practice.
MLflow, DVC, Kubeflow Pipelines, and AWS SageMaker appear
most frequently in MLOps pipelines because each addresses a
critical pain point: MLflow simplifies experiment tracking, DVC
brings Git-style version control to data, Kubeflow coordinates cloud-
agnostic workflows, and SageMaker lifts the infrastructure burden
through a fully managed service. Their popularity is sustained ei-
ther by lively open-source communities or by the deep resources
of a major cloud provider.

Yet none of these platforms covers the entire lifecycle on its own.
Researchers commonly assemble a mixed tool pipeline. Future work
should move beyond cataloguing tools to evaluating tool interoper-
ability and integration effort. This includes analyzing each tool’s
dependencies on external platforms and how easily it can be com-
bined with others to build coherent workflows. A useful extension

10

Zakkarija Micallef

would be a comparative table showing dependency relationships
and open-source status, offering a clearer picture of ecosystem
maturity and possible vendor lock-in. Benchmarking integration
effort, metadata consistency, and runtime stability would offer the
objective metrics needed to help practitioners choose interoperable
end-to-end solutions.

References

[1] [n.d.]. The Winding Road to Better Machine Learning Infrastruc-
ture Through Tensorflow Extended and Kubeflow | Spotify Engineer-
ing. https://engineering.atspotify.com/2019/12/the-winding- road-to-better-
machine-learning-infrastructure-through- tensorflow-extended-and-kubeflow
William Inouye Almeida. 2023. Building an Automated MLOps Pipeline
and Recommending an Open-Source Stack to Deploy a Machine Learning
Application. Master’s thesis. Universidade do Porto (Portugal). https:
//search.proquest.com/openview/3caae32a5b14a5346907376fce17b338/1?pq-
origsite=gscholar&cbl=2026366&diss=y

[3] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and
Alexander Chatzigeorgiou. 2019. Identifying, categorizing and mitigating threats
to validity in software engineering secondary studies. Information and Software
Technology 106 (2019), 201-230. https://doi.org/10.1016/j.infsof.2018.10.006

[4] Vidushi Arora. 2024. Exploring real-world challenges in MLOps implementation:
a case study approach to design effective data pipelines. (2024). https://elib.uni-
stuttgart.de/items/e6f46863-465d-4e88-861c-9dcbabc746db

[5] Michal Bacigal. 2024. Design and Implementation of Machine Learning Opera-
tions. (Feb. 2024). https://dspace.cvut.cz/handle/10467/113781 Accepted: 2024~
02-09T23:53:17Z Publisher: Ceské vysoké uceni technické v Praze. Vypocetni a
informaéni centrum..

[6] Rahul Bagai, Ankit Masrani, Piyush Ranjan, Madhavi Najana, and Ankit Mas-
rani. 2024. Implementing Continuous Integration and Deployment (CI/CD) for
Machine Learning Models on AWS. International Journal of Global Innovations
and Solutions (IJGIS) (May 2024). https://doi.org/10.21428/€90189¢8.9cb39¢55
Publisher: The New World Foundation.

[7] N.Bauman. 2022. Building a generalisable ML pipeline at ING. (2022). https:
//repository.tudelft.nl/record/uuid:35¢850eb- 1d03-4185-a8¢5-4469b2112327

[8] Ralph Bergmann, Felix Theusch, Paul Heisterkamp, and Narek Grigoryan. 2024.
Comparative Analysis of Open-Source ML Pipeline Orchestration Platforms.
(2024). https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/
382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_
Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-
Analysis-of-Open-Source- ML-Pipeline-Orchestration-Platforms.pdf

[9] Anas Bodor, Meriem Hnida, and Daoudi Najima. 2023. From Development to
Deployment: An Approach to MLOps Monitoring for Machine Learning Model
Operationalization. In 2023 14th International Conference on Intelligent Systems:
Theories and Applications (SITA). 1-7. https://doi.org/10.1109/SITA60746.2023.
10373733

[10] Anas Bodor, Meriem Hnida, and Daoudi Najima. 2023. MLOps: Overview of
Current State and Future Directions. In Innovations in Smart Cities Applications
Volume 6. Springer, Cham, 156-165. https://doi.org/10.1007/978-3-031-26852-
6_14 ISSN: 2367-3389.

[11] Antonio M. Burgueiio-Romero, Cristobal Barba-Gonzalez, and José F. Aldana-

Montes. 2025. Big Data-driven MLOps workflow for annual high-resolution land

cover classification models. Future Generation Computer Systems 163 (Feb. 2025),

107499. https://doi.org/10.1016/j.future.2024.107499

Ji-hyun Cha, Heung-gyun Jeong, Seung-woo Han, Dong-chul Kim, Jung-hun

Oh, Seok-hee Hwang, and Byeong-ju Park. 2023. Development of MLOps Plat-

form Based on Power Source Analysis for Considering Manufacturing Environ-
ment Changes in Real-Time Processes. In Human-Computer Interaction. Springer,

Cham, 224-236. https://doi.org/10.1007/978-3-031-35572-1_15 ISSN: 1611-3349.

Swati Choudhary. 2021. Kubernetes-Based Architecture For An On-premises

Machine Learning Platform. (2021).

[14] Thomas Davenport and Katie Malone. 2021. Deployment as a Critical Busi-

ness Data Science Discipline. Harvard Data Science Review 3, 1 (feb 10 2021).

https://hdsr.mitpress.mit.edu/pub/2fu65ujf.

Daniel Deutsch. 2023. Machine learning operations — domain analysis, reference

architecture, and example implementation / Author Daniel Deutsch, LL.B. (WU).

LL.M. (WU). http://epub.jku.at/obvulihs/8593075

Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. 2016.

DevOps. IEEE Software 33, 3 (2016), 94-100. https://doi.org/10.1109/MS.2016.68

[17] Kanwarpartap Singh Gill, Vatsala Anand, Rahul Chauhan, Ruchira Rawat, and
Pao-Ann Hsiung. 2023. Utilization of Kubeflow for Deploying Machine Learning
Models Across Several Cloud Providers. In 2023 3rd International Conference on
Smart Generation Computing, Communication and Networking (SMART GENCON).
1-7. https://doi.org/10.1109/SMARTGENCON60755.2023.10442069

[2

[12

[13

[15

[16

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

https://engineering.atspotify.com/2019/12/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow
https://engineering.atspotify.com/2019/12/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow
https://search.proquest.com/openview/3caae32a5b14a5346907376fce17b338/1?pq-origsite=gscholar&cbl=2026366&diss=y
https://search.proquest.com/openview/3caae32a5b14a5346907376fce17b338/1?pq-origsite=gscholar&cbl=2026366&diss=y
https://search.proquest.com/openview/3caae32a5b14a5346907376fce17b338/1?pq-origsite=gscholar&cbl=2026366&diss=y
https://doi.org/10.1016/j.infsof.2018.10.006
https://elib.uni-stuttgart.de/items/e6f46863-465d-4e88-861c-9dcbabc746db
https://elib.uni-stuttgart.de/items/e6f46863-465d-4e88-861c-9dcbabc746db
https://dspace.cvut.cz/handle/10467/113781
https://doi.org/10.21428/e90189c8.9cb39c55
https://repository.tudelft.nl/record/uuid:35c850eb-1d03-4185-a8c5-4469b2112327
https://repository.tudelft.nl/record/uuid:35c850eb-1d03-4185-a8c5-4469b2112327
https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf
https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf
https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf
https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf
https://doi.org/10.1109/SITA60746.2023.10373733
https://doi.org/10.1109/SITA60746.2023.10373733
https://doi.org/10.1007/978-3-031-26852-6_14
https://doi.org/10.1007/978-3-031-26852-6_14
https://doi.org/10.1016/j.future.2024.107499
https://doi.org/10.1007/978-3-031-35572-1_15
http://epub.jku.at/obvulihs/8593075
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/SMARTGENCON60755.2023.10442069

1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

1416

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights

(18

[19]

[20]

[21]

[22]

[23

[24]

[25]

[32]

[33]

[34]

[35]

[36]

[37

[38

Google Cloud Tech. 2020. Introduction to Kubeflow. https://www.youtube.com/
watch?v=cTZArDgbIWw

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 620-629. https://doi.org/10.1109/HPCA.
2018.00059 ISSN: 2378-203X.

Hannes Jamtner and Stefan Brynielsson. 2022. An Empirical Study on AT Work-
flow Automation for Positioning. (2022).

Barbara Ann Kitchenham and Stuart Charters. 2007. Guidelines for Per-
forming Systematic Literature Reviews in Software Engineering. Technical Re-
port EBSE 2007-001. Keele University and Durham University Joint Report,
Keele, UK and Durham, UK. https://www.elsevier.com/__data/promis_misc/
525444systematicreviewsguide.pdf

Dominik Kreuzberger, Niklas Kiihl, and Sebastian Hirschl. 2022. Machine Learn-
ing Operations (MLOps): Overview, Definition, and Architecture. https:
//doi.org/10.48550/arXiv.2205.02302 arXiv:2205.02302 [cs].

Anders Kohler. 2022. Evaluation of MLOps Tools for Kubernetes : A Rudimentary
Comparison Between Open Source Kubeflow, Pachyderm and Polyaxon. https:
//urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-488601

Yumo Luo. 2023. An Open-Source and Portable MLOps Pipeline for Continuous
Training and Continuous Deployment. (2023).

Giulio Mallardi, Fabio Calefato, Luigi Quaranta, and Filippo Lanubile.
2024. An MLOps Approach for Deploying Machine Learning Models in
Healthcare Systems. In 2024 IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM). IEEE, 6832-6837. https://ieeexplore.ieee.
org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:
EOEBUeW0Y9ZBRsrZ5ij8 AoSypmOyGTqTPEraM4kOitmHiRI-
0s4zW90mjkMLOt65AuexQrDa3TwVGsQ

Andres Felipe Varon Maya. [n.d.]. The State of MLOps. ([n.d.]).

Rick Merritt. 2020. What is MLOps? https://blogs.nvidia.com/blog/what-is-
mlops/

Zakkarija Micallef. 2025. A Systematic Review of MLOps Tools: Practices, Chal-
lenges, and Lessons Learned. https://doi.org/10.5281/zenodo.15459745

Widad El Moutaouakal and Karim Baina. 2023. Comparative Experimentation of
MLOps Power on Microsoft Azure, Amazon Web Services, and Google Cloud
Platform. In 2023 IEEE 6th International Conference on Cloud Computing and
Artificial Intelligence: Technologies and Applications (CloudTech). 1-8. https:
//doi.org/10.1109/CloudTech58737.2023.10366138

Sasu Mékinen. 2021. Designing an open-source cloud-native MLOps pipeline.
University of Helsinki (2021). https://helda.helsinki.fi/server/api/core/bitstreams/
d01f98ef-becf-4329-997d-3ebe70092590/content

Oscar A. Méndez, Jorge Camargo, and Hector Florez. 2025. Machine Learning
Operations Applied to Development and Model Provisioning. In Applied Infor-
matics, Hector Florez and Hernan Astudillo (Eds.). Vol. 2236. Springer Nature
Switzerland, Cham, 73-88. https://doi.org/10.1007/978-3-031-75144-8_6 Series
Title: Communications in Computer and Information Science.

Faezeh Amou Najafabadi, Justus Bogner, Ilias Gerostathopoulos, and Patricia
Lago. 2024. An Analysis of MLOps Architectures: A Systematic Mapping Study.
Vol. 14889. 69-85. https://doi.org/10.1007/978-3-031-70797-1_5 arXiv:2406.19847
[cs].

Moses Openja, Forough Majidi, Foutse Khomh, Bhagya Chembakottu, and Heng
Li. 2022. Studying the Practices of Deploying Machine Learning Projects on
Docker. In Proceedings of the 26th International Conference on Evaluation and
Assessment in Software Engineering (EASE "22). Association for Computing Ma-
chinery, New York, NY, USA, 190-200. https://doi.org/10.1145/3530019.3530039
Alessandro Palladini. 2022. Streamline machine learning projects to production
using cutting-edge MLOps best practices on AWS. laurea. Politecnico di Torino.
https://webthesis.biblio.polito.it/22607/

Productdock d.o.0, Nataga Radakovi¢, Ivana Senk, University of Novi Sad, Faculty
of Technical Sciences, Nina Romani¢, and Productdock d.o.o. 2023. A MACHINE
LEARNING PIPELINE IMPLEMENTATION USING MLOPS AND GITOPS PRIN-
CIPLES. In 19th International Scientific Conference on Industrial Systems. Faculty
of Technical Sciences, 94-99. https://doi.org/10.24867/1S-2023-T2.1-6_08141
Katja-Mari Ratilainen. 2023. Adopting Machine Learning Pipeline in Existing
Environment. (2023).

Gilberto Recupito, Fabiano Pecorelli, Gemma Catolino, Sergio Moreschini,
Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri. 2022. A Multivo-
cal Literature Review of MLOps Tools and Features. In 2022 48th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). 84-91.
https://doi.org/10.1109/SEAA56994.2022.00021

Philipp Ruf, Manav Madan, Christoph Reich, and Djaffar Ould-Abdeslam. 2021.
Demystifying MLOps and Presenting a Recipe for the Selection of Open-Source
Tools. Applied Sciences 11, 19 (Jan. 2021), 8861. https://doi.org/10.3390/

11

[39

[40]

[41]

[42

[44]

[45]

[46

[49]

[50]

Literature Review, May 2025, Vrije Universiteit Amsterdam

app11198861 Number: 19 Publisher: Multidisciplinary Digital Publishing In-
stitute.

Enrico Salvucci. 2021. MLOps-Standardizing the Machine Learning Workflow.
(2021). https://amslaurea.unibo.it/id/eprint/23645/

Luca Scotton. 2021. Engineering framework for scalable machine learning
operations. (2021). https://aaltodoc.aalto.fi/items/a1497a44- 1c3a-46bf-b76a-
c7cba635462¢

Ladson Gomes Silva. 2022. A Review on How Machine Learning Operations
(MLOps) are Changing the Landscape of Machine Learning Development for
Production. (2022).

Afonso Rafael Carvalho Sousa. 2022. Orchestrator selection process for cloud-
native machine learning experimentation. (2022).

Matteo Testi. 2024. Machine Learning Operations (MLOps) in Healthcare. (2024).
https://www.iris.unicampus.it/handle/20.500.12610/83683 Publisher: Universita
Campus Bio-Medico.

T Vishwambari and Sonali Agrawal. 2023. Integration of Open-Source Machine
Learning Operations Tools into a Single Framework. In 2023 International Con-
ference on Computing, Communication, and Intelligent Systems (ICCCIS). 335-340.
https://doi.org/10.1109/ICCCIS60361.2023.10425558

Samar Wazir, Gautam Siddharth Kashyap, and Parag Saxena. 2023. MLOps: A
Review. https://doi.org/10.48550/arXiv.2308.10908 arXiv:2308.10908 [cs].
Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering. ACM, London
England United Kingdom, 1-10. https://doi.org/10.1145/2601248.2601268

Ting Chun Yau. 2023. Investigate the challenges and opportunities of MLOps.
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-324011

Mohammad Zarour, Hamza Alzabut, and Khalid T. Al-Sarayreh. 2025. MLOps
best practices, challenges and maturity models: A systematic literature review.
Information and Software Technology 183 (July 2025), 107733. https://doi.org/10.
1016/j.infsof.2025.107733

Yue Zhou, Yue Yu, and Bo Ding. 2020. Towards mlops: A case study of ml
pipeline platform. In 2020 International conference on artificial intelligence
and computer engineering (ICAICE). IEEE, 494-500. https://ieeexplore.
ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhIXhl12E8M5hgbYSzM5HaF7ysjw0VLIO3K-1452

ilzZXVPW6M8

Iago Aguila Cifuentes. 2023. Design and Development of an MLOps Framework.
Master’s thesis. Universitat Politécnica de Catalunya. https://upcommons.upc.
edu/handle/2117/395348 Accepted: 2023-10-25T10:32:47Z.

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

https://www.youtube.com/watch?v=cTZArDgbIWw
https://www.youtube.com/watch?v=cTZArDgbIWw
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://doi.org/10.48550/arXiv.2205.02302
https://doi.org/10.48550/arXiv.2205.02302
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-488601
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-488601
https://ieeexplore.ieee.org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-0s4zW9omjkMLOt65AuexQrDa3TwVGsQ
https://ieeexplore.ieee.org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-0s4zW9omjkMLOt65AuexQrDa3TwVGsQ
https://ieeexplore.ieee.org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-0s4zW9omjkMLOt65AuexQrDa3TwVGsQ
https://ieeexplore.ieee.org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-0s4zW9omjkMLOt65AuexQrDa3TwVGsQ
https://blogs.nvidia.com/blog/what-is-mlops/
https://blogs.nvidia.com/blog/what-is-mlops/
https://doi.org/10.5281/zenodo.15459745
https://doi.org/10.1109/CloudTech58737.2023.10366138
https://doi.org/10.1109/CloudTech58737.2023.10366138
https://helda.helsinki.fi/server/api/core/bitstreams/d01f98ef-becf-4329-997d-3ebe70092590/content
https://helda.helsinki.fi/server/api/core/bitstreams/d01f98ef-becf-4329-997d-3ebe70092590/content
https://doi.org/10.1007/978-3-031-75144-8_6
https://doi.org/10.1007/978-3-031-70797-1_5
https://doi.org/10.1145/3530019.3530039
https://webthesis.biblio.polito.it/22607/
https://doi.org/10.24867/IS-2023-T2.1-6_08141
https://doi.org/10.1109/SEAA56994.2022.00021
https://doi.org/10.3390/app11198861
https://doi.org/10.3390/app11198861
https://amslaurea.unibo.it/id/eprint/23645/
https://aaltodoc.aalto.fi/items/a1497a44-1c3a-46bf-b76a-c7cba635462c
https://aaltodoc.aalto.fi/items/a1497a44-1c3a-46bf-b76a-c7cba635462c
https://www.iris.unicampus.it/handle/20.500.12610/83683
https://doi.org/10.1109/ICCCIS60361.2023.10425558
https://doi.org/10.48550/arXiv.2308.10908
https://doi.org/10.1145/2601248.2601268
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-324011
https://doi.org/10.1016/j.infsof.2025.107733
https://doi.org/10.1016/j.infsof.2025.107733
https://ieeexplore.ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-ilzXVPW6M8
https://ieeexplore.ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-ilzXVPW6M8
https://ieeexplore.ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-ilzXVPW6M8
https://ieeexplore.ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-ilzXVPW6M8
https://upcommons.upc.edu/handle/2117/395348
https://upcommons.upc.edu/handle/2117/395348

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509

1510

Literature Review, May 2025, Vrije Universiteit Amsterdam

Zakkarija Micallef

Table 3: Summary of MLOps Tools: Infrastructure and Supporting Service (Orchestrators)

Tool Benefits Limitations
Apache Airflow
B1 Open source software licensed under Apache L1 Installation and configuration can be complex
License 2.0 [50] in real-world environments [50]
B2 Provides an intuitive web interface for visual- L2 The recommended installation method is com-
ising and monitoring workflows [50] plicated in real-world situations [50]
Kubeflow Pipelines
B3 Cloud-agnostic architecture enabling it to be L3 Difficult to set up with a non-trivial learning
executed on any cloud provider that supports curve. [23][42].
Kubernetes [17] [24] [20] with distributions L4 "Everything in one package" and hence can
dedicated for major cloud providers [23]. feel bloated compared with small, focused so-
B4 More mature and widespread than its competi- lutions aimed at solving specific pain points
tors and more specialised for ML when com- [42].
pared with Flyte, Apache Airflow, and so on L5 Out-of-date documentation for many Kube-
[20]. flow features [23].
B5 Abstracts away the complexity of dynamically
scaling workloads up or down via the Kuber-
netes engine. scale [13].
B6 Full end-to-end MLOps solution (Kubeflow
Notebooks, Kubeflow Pipelines, Katib) that is
highly customisable, through either KServe or
Seldon Core [23] and with seamless TFX inte-
gration [49].
B7 Offers an easily accessible and configurable
Kubeflow UI dashboard [23] [12].
B8 Strong security (multi-user isolation) [23].
ZenML
B9 Simple local development (configured in three L6 Incomplete user management features [5].
simple commands) [5].
B10 Automatic deployment of a local MLflow track-
ing server [5].
B11 Easily expandable to support different orches-
tration components [5].
Argo Workflow
B12 Workflow definitions enable straightforward L7 Requires developers to manage containerisa-
artefact storage and transfer between tasks. tion complexity.
B13 Supports fully automated, reproducible, and L8 Pipeline development and management de-

scalable end-to-end model training, evaluation,
and deployment without manual intervention.

mand in-depth knowledge of Kubernetes and
associated tooling.

12

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

1692

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights

Literature Review, May 2025, Vrije Universiteit Amsterdam

Table 4: Summary of MLOps Tools: Managed End-to-End Platforms

Tool Benefits Limitations
AzureML
B14 Simple data imports and code-free drag-and- L9 Commercial product requiring an Azure sub-
drop tools for data cleaning and transforma- scription [29].
tion [29].
B15 Quick and easy to set up for testing, orchestra-
tion, and robust security (network protection,
RBAC) [29].
B16 Fully complete security features. Only Mi-
crosoft Azure ML provides the ability for users
to set up network and data protection policies
as well as built-in RBAC features [29].
SageMaker
B17 Robust and intuitive, offering feature parity L10 Requires a commercial licence [47].
with Azure ML [29]. Includes a good set of L11 Requires programming skills and has less com-
tools with its own model registry, a feature prehensive documentation [47].
store and lineage tracking logic. Handles step L12 If an organisation does not already use AWS
creations and management as well as auto- TAM or SSO, additional adoption and migration
mates model deployment with CI/CD [34]. work is required [29].
B18 Facilitates easy scalable training and deploy-
ment that reduces operation overhead [6].
B19 Seamless integration within the AWS ecosys-
tem [34] such as the ability to integrate with
AWS Single Sign-On (SSO) to manage identi-
ties and access [29].
B20 Provides abstracted tools for model tuning
[34].
Google Vertex Al
B21 Offers AutoML, integrates Jupyter Notebook L13 Dataset preparation tasks are considered the
in Vertex AI Workbench and provides its own most "painful”, with large multi-step coding
model registry and pipelines. Integrates moni- tasks without a visual drag-and-drop interface
toring and logging capabilities [41]. when compared to Azure and AWS Sagemaker
B22 Easy to use central Ul dashboard with visu- [29].
alised workflows where users can monitor the L14 Lacks robust security control measures (IAM
progress, review the execution history, and un- and workspace separation) [29].
derstand the dependencies between different L15 Operates on a commercial, pay-as-you-go
components of the pipeline [8]. model.
B23 Flexible scalability and easy to use Kubernetes

cluster with a choice of machine hardware [8].

13

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
177
1772

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

Literature Review, May 2025, Vrije Universiteit Amsterdam

Zakkarija Micallef

Table 5: Summary of MLOps Tools: End-to-End Platforms

Tool Benefits Limitations
MLflow
B24 User-friendly with a Ul providing visualisation L16 Requires a dedicated server or additional web ser-
capabilities for easy data interpretation and analy- vice for collaboration, which complicates initial
sis, along with an intuitive web-based dashboard setup and maintenance [4][40].
[31][36][25]. L17 Does not automatically reproduce data versions,
B25 Completely open-source and self-hosting capabil- necessitating manual intervention for consistency
ities while natively supporting container deploy- [36][4]. Relies on the user using other tools.
ments [5][40]. L18 Lacks in-built alerting based on monitoring for
B26 Strong vitality, since it is a well-established insufficient resources [40].
tool used by many world-renowned companies, L19 Does not offer role-based access or user isolation,
backed by strong community support [5][11]. allowing unrestricted changes to experiments by
B27 Offers comprehensive and extensive documenta- any user. [5][36].
tion [11]. L20 Lacks native collaboration features and automated
B28 Comprehensive Experiment Tracking with robust deployment tools [36].
logging and visualisation of metrics and artefacts, L21 Certain advanced features or enterprise use cases
which allows users to trace models to their train- require a commercial licence [47].
ing rounds via MLflow APIs/UI and to track al-
gorithms, hyperparameters, dataset versions, and
feature selections [31][4][49]. It is MLFow’s key
feature and module.
B29 Simplifies performance evaluation with enhanced
model performance monitoring. Moreover, it fea-
tures autologging and seamlessly integrates with
other monitoring tools for efficient model im-
provement [5][9][15][31].
B30 Flexible data storage options with support for pop-
ular cloud storage services (Amazon S3, Azure
Blob Storage, Google Cloud Storage) as well as
on-premise or hybrid options (SFTP, NFS), local
files, SQLAlchemy-compatible databases, or re-
mote tracking servers [36].
Neptune
B31 Easy setup with a clear guide [47] and integrates L22 Requires basic programming skills [43].
with tools like Google Colab, Git, and Docker [43].
B32 Complete MLOps platform: monitoring, data ver-
sioning, and testing in one solution [43].
B33 Open-source [47].
B34 Can be used for monitoring [43].
Pachyderm
B35 Provides GUI-accessible services for notebook ex- L23 Requires knowledge of, and manual configuration
perimentation, experiment tracking, and hyper- for, cloud storage and Helm deployments [23].
parameter optimisation [23]. L24 Entails a computationally heavy file system over-
B36 Simple to parallelise experiments [23]. head compared with Kubeflow and Polyaxon [23].
L25 Lacks "out-of-the-box" solutions.
Polyaxon
B37 Requires only basic Helm and Kubernetes opera- L26 Does not provide out-of-the-box scaling [24].
tor knowledge [23]. L27 Uncertain open-source vitality due to a weaker
B38 Provides a meticulous audit trail that enhances community compared to Pachyderm and Kube-
reproducibility [23]. flow [23].
TFX

B39

B40

B41

Automates regular retraining, evaluation, and de-

ployment [8]. 14
Supports distributed computing for large work-
loads [8].

Portable and can be run on various orchestration
platforms such as Apache Airflow [8].

L28

Requires TensorFlow, which might be limiting for
non-TF use cases [20].

1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910

1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

1968

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights

Literature Review, May 2025, Vrije Universiteit Amsterdam

Table 6: Summary of MLOps Tools: Storage & Versioning

Tool

Benefits

Limitations

Dagshub

DVC

GTO

MinlO

Weights & Biases

Feast

B42
B43

B44

B45

B46

B47

B48

B49

B50

B51

B52

B53

B54

B55

B56

B57

B58

B59
B60

Facilitates collaboration and versioning [31].
Circumvents GitHub’s size limitations and in-
tegrates with DVC and MLflow [31][15].
Offers a free integrated MLflow server and uni-
fied storage for data and metadata [2][15].

Easy to use as its DVC workflow is similar to
Git’s. This helps ease its adoption among users
familiar with Git [4].

Modularises workflows into stages, ensuring
reproducibility and reducing manual errors
[4].

Pipeline data can be automatically pulled from
a DagsHub repository so that the entire pro-
cess can be run using only a single command,
thus simplifying workflow execution [33].
Caching for unchanged stages saves time and
minimises overhead [35].

Flexible storage options (e.g., Google Drive,
HTTP, S3) without requiring a dedicated
server or GitLFServer [4].

Functions as a GitOps-based model registry,
removing the need for separate databases or
servers by leveraging Git and DVC [35].
Supports promotion of models to specific
stages, facilitating deployment across desig-
nated environments [35].

Seamlessly integrates with Iterative products
such as DVC and CML [35].

S3-compatible storage solution optimised for
Al workloads [5].

Used for storing artefacts and metadata gen-
erated by ZenML [43] and MLflow [4], and
suitable for general data.

Real-time experiment tracking with built-in
hardware usage monitoring [5].

Free tier offers unlimited experiment runs and
100 GB of artefact storage. In addition, it in-
cludes dataset/model versioning, hyperparam-
eter optimisation, report generation, and a
model registry [5].

Manages historical and live data with of-
fline/online feature storage [44].

Allows reuse of features across different ML
projects [47]. 15

Integrates with MLflow [44].

Open-source [47].

L29

L30

L31

L32

L33

L34
L35

Requires manual updates for externally stored
data [4].

File-level versioning can lead to extensive stor-
age use in environments with frequent file
changes and is not suited for versioning SQL
databases [4].

Requires registration and a licence key for ini-
tial setup. The free plan is limited to personal
projects [5].

Only the client application is open-source. The
server-side infrastructure is proprietary, limit-
ing self-hosting options [5].

Demands advanced programming knowledge
for integration and usage [43][5].

Requires advanced programming skills [47].
Integration process is relatively complicated
[47].

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048

2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106

Literature Review, May 2025, Vrije Universiteit Amsterdam

Zakkarija Micallef

Table 7: Summary of MLOps Tools: Inference (Model Serving)

Tool

Benefits

Limitations

BentoML

KServe

Seldon Core

Evidently

B61

B62

B63

Bo4

B65

B66

B67

B68

B69

B70

B71

Open-source [40] and supports multiple frame-
works (TF, PyTorch, Keras, XGBoost) [39].
Features automated micro-batching for better
API performance and cloud-native deployment
[40].

Automatically wraps models as web services
and is easily integrated with Kubeflow [24].

Provides scalable and isolated deployments
[17] with support for HTTP/gRPC APIs [24].

Offers pre-packaged inference servers with ro-
bust Kubernetes support [11].

Supports advanced metrics tracking via
Prometheus [11].

Provides model monitoring for data, target,
and prediction drifts [2][44].

Predefined monitoring reports can be gener-
ated with few lines of code [2].

Enables a single monitor to calculate metrics
across multiple models [24].

Integrates with Prometheus and Grafana for
interactive reports, scheduled tests, and result
logging [44].

Automatically logs results as artefacts in
MLflow [44].

L36 Provides inference-only [40] and does not offer
an automatic deployment of models, as KServe
and Seldon Core do [24][20].

L37 Supports tabular data only. For image or text
data, consider Alibi Detect [24].

16

2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186

2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243

2244

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights

Literature Review, May 2025, Vrije Universiteit Amsterdam

Table 8: Summary of MLOps Tools: Inference (Model Deployment)

Tool

Benefits

Limitations

Metaflow

Streamlit

CML

B72

B73

B74

B75

B76

B77

B78

B79

Provides a framework for creating and execut-
ing data science workflows locally and scaling
to the cloud with ease [40].

Rigorous checkpoint system enables great
tracking and logging [40].

Fully integrated with AWS for automatic re-
source management and native parallelisation
via AWS Batch [40].

Simple interface for deploying ML applications
to the cloud [2].

Convenient GitHub integration streamlines de-
ployment workflows [2].

Manages ML experiments and tracks modifica-
tions automatically [35].

Generates comprehensive reports with essen-
tial metrics and plots [35].

Reports are created and displayed directly in
pull request comments, enhancing collabora-
tion and review efficiency [35].

L38

1 GB limit for public application deployments
(2].

Table 9: Summary of MLOps Tools: Infrastructure and Supporting Services

Tool

Benefits

Limitations

Gradio

TensorBoard

B80

B81

B82

B83

Enables creation of interactive web interfaces
for model evaluation, demonstration, and de-
ployment without HTML/CSS/JS knowledge

[15].

Visualisation toolkit for model graphs,
weight/bias histograms, and training metrics
[47].

Provides full exploration and visualisation
functionality [47].

Open-source and integrates with multiple tools
and applications [47].

L39

Requires familiarity with TensorBoard tooling
and community support for effective use [47].

17

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324

2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382

Literature Review, May 2025, Vrije Universiteit Amsterdam

Table 10: Summary of MLOps Tools: ML Training

Zakkarija Micallef

Tool Benefits Limitations

Katib

B84 Optimises hyperparameters for frameworks
such as TensorFlow, MXNet, PyTorch, and XG-
Boost [17].

B85 Seamlessly integrates with Kubeflow [17].

18

2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462

	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Research Goal
	3.2 Research Questions
	3.3 Pilot Study
	3.4 Initial search
	3.5 Application of Selection Criteria
	3.6 Snowballing
	3.7 Data Extraction
	3.8 Data Synthesis
	3.9 Study Replicability
	3.10 Threats to Validity

	4 Results
	4.1 RQ1: Which tools employed in MLOps workflows are most frequently reported in academic literature?
	4.2 RQ2: Which stages of the MLOps lifecycle do these tools cover in the use cases reported in the academic literature?
	4.3 RQ3: What are the reported benefits and limitations of the MLOps tools?

	5 Discussion
	5.1 RQ1 – Which tools employed in MLOps workflows are most frequently reported in academic literature?
	5.2 RQ2 – Which stages of the MLOps lifecycle do these tools cover in the reported use cases?
	5.3 RQ3 – What are the claimed benefits and limitations of the MLOps tool?

	6 Conclusion
	References

