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Abstract
Machine learning operations (MLOps) has become increasingly
critical as more organisations move machine learning models into
production. However, the growing landscape of MLOps solutions
has introduced complexity for practitioners trying to select appro-
priate tools. To investigate how and why these tools are adopted
in practice, this paper conducts a systematic review of academic
literature focused on MLOps tools. The analysis maps tools to
MLOps lifecycle stages to reveal their function, scope, and the chal-
lenges they are designed to address. It identifies usage trends and
synthesises reported benefits and limitations based on practical
implementations. The most commonly used components, accord-
ing to the findings, are orchestration frameworks, data versioning,
experiment tracking, and managed cloud platforms. No single tool
covers the entire lifecycle, so researchers often combine multiple
tools to build complete pipelines. This highlights the importance of
interoperability across MLOps tools in real-world MLOps pipelines.

Keywords
Systematic Literature Review, MLOps, tool taxonomy, lifecycle map-
ping, tool adoption, MLflow, Kubeflow

1 Introduction
In recent years, AI has experienced a dramatic surge in popularity.
As more companies deploy AI solutions, they quickly discover
that specialised infrastructure is essential to support these new
capabilities. However, many AI engineers and data scientists lack
the software-deployment expertise of operations teams, especially
when it comes to MLOps tools [14].

Traditionally, an operations team is in charge of tasks such as
deployment and ongoing monitoring [16]. To reduce software time-
to-value and create stronger collaboration between development
and operations, software companies frequently use DevOps. De-
vOps is described as a culture that emphasises continuous collabo-
ration throughout the software lifecycle. It involves practices like
Continuous Integration, which involves frequent code merges, and
Continuous Deployment, which automates the release process to
ensure software remains deployable.

MLOps refers to the entire lifecycle of the machine-learning
process, bridging the gap between data, development, and oper-
ations [22]. MLOps extends beyond applying DevOps principles
to machine learning (ML). It involves continuous integration and
continuous deployment automation for ML pipelines, orchestra-
tion of ML workflows, versioning of data, models, and code to
ensure reproducibility, continuous training to keep models up to
date, metadata tracking for experiment auditability, and continuous
evaluation and performance monitoring.

Despite the growing interest in MLOps, existing reviews often
remain high-level, focusing primarily on listing tools, comparing
surface-level features, or distinguishing between open-source and
proprietary solutions. However, there is limited synthesis of how
these tools are actually used in practice [37]. Most studies fail to
capture the practical experiences of teams deploying real-world ML
systems. This gap in the literature limits the ability of researchers
and practitioners to make informed choices based on implementa-
tion outcomes rather than tool specifications alone. In this paper, we
explore the range of MLOps tools referenced in academic literature
and examine their real-world applications. While other papers inte-
grate general-purpose DevOps tools such as Docker, Kubernetes,
Git, and Jenkins with ML-specific tools, our SLR (Systematic Litera-
ture Review) focuses exclusively on MLOps native tools that are
developed specifically for machine learning workloads, excluding
general-purpose tools. We explore how practitioners use these tools
in their pipelines, why they select specific MLOps solutions, and
the advantages and drawbacks they face in real-world scenarios.
Through this analysis, we aim to provide a clear view of the current
MLOps landscape.

2 Related Work
MLOps remains a vague umbrella term, with its scope and impli-
cations still ambiguous for both researchers and practitioners. To
bring clarity, Kreuzberger et al. [22] conducted mixed-method re-
search, where they combined a literature review, a tool review, and
expert interviews to create a comprehensive description of MLOps
that we adopt as our definition of MLOps in Section 1. Their work
has become a de facto standard, widely cited by other papers [10]
[45] [48]. While Kreuzberger et al. [22] identified principles, tech-
nical components, and roles of MLOps, we focus solely on the
technical elements that recur across the literature: CI/CD pipelines
for training and deployment, workflow orchestration, feature-store
systems, model-training infrastructure, model registries, metadata
stores, serving components, and monitoring tools. A synthesis of
prior surveys shows that these components consistently form the
backbone of MLOps solutions [37] [45] [48] [10] [32]:

• Data engineering
• Version control
• Hyperparameter tuning and experiment tracking
• CI/CD pipelines for training and deployment
• Workflow orchestration
• Model deployment/serving
• Automated testing and validation
• Continuous performance monitoring

Varon Maya’s [26] argues that bringing DevOps principles into
ML pushes organisations toward pipeline-like architectures: NVIDIA
[27], Facebook [19], Spotify [1] and Google [18] each describe a
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flow that runs from data collection and feature engineering through
training, validation and model serving, occasionally adding feed-
back loops that trigger continuous retraining. This structure clari-
fies ownership, lets every stage use specialised tooling and aligns
with CI/CD automation. However, higher-level concerns such as
process orchestration and configuration management are largely
unaddressed with this pipeline architecture, creating challenges
for reproducibility and maintainability in complex ML systems.
Our systematic literature review (SLR) adopts the same pipeline
perspective, evaluating MLOps tools stage by stage.

In modern software development environments, multiple lan-
guages and libraries are combined. To determine which languages,
frameworks, and runtimes each tool supports, Wazir et al. [45]
looked at 22 open-source catalogues and research publications.
Given the frequent combination of Python, Java, R, and other spe-
cialised libraries, their findings highlight the need for MLOps plat-
forms to continue being language agnostic. Building on this, Ruf et
al. [38] conducted interviews and real-world trials to produce a de-
tailed feature matrix of API bindings and integration hooks offered
by each candidate tool. They show that lacking support for lan-
guages like R or Java can hinder collaboration between operations
and data science teams. Consequently, they recommend conducting
several iterative selection rounds before beginning work, ensuring
all departments agree on a unified toolchain.

In Recupito et al.’s review [37], thirteen prominent MLOps plat-
formsweremapped to the stage of theMLOps pipeline they support:
data management, model training, CI/CD, monitoring, and so on.
Their comparison shows that no single product spans the entire
lifecycle, so practitioners routinely assemble multi-tool pipelines.
Multiple studies [37] [38] [45] highlight the importance of evalu-
ating not just each tool’s individual strengths but also how well
they interoperate with other tools and the dependencies they intro-
duce. Interestingly, nearly 50% of the sources in Recupito et al. [37]
review are blog posts, underscoring how much MLOps expertise
circulates through informal channels rather than peer-reviewed
papers. While several recent papers embrace a multivocal approach
that blends academic and practitioner sources, our decision to focus
solely on academic papers means that some practitioner findings
may be missed.

Our SLR compares tools by the benefits and limitations that paper
authors explicitly report from their practical experience, in contrast
to the majority of previous reviews that compare tools based on
claimed features listed on the tool developer’s websites or their
official blogs. This method provides a more accurate understanding
of the practical experience and shortcomings of MLOps tools.

3 Study Design
3.1 Research Goal
This study presents a clear landscape of MLOps tools through a SLR
of academic papers. It examines the platforms and libraries adopted
by practitioners and analyzes which stages each tool addresses
to reveal its function, scope, and the challenges it is designed for.
The review also investigates the factors influencing tool adoption,
offering insights into the technologies most relevant to current
MLOps practices and how they integrate into real-world workflows.

3.2 Research Questions
3.2.1 RQ1: Which tools employed in MLOps workflows are most
frequently reported in academic literature? Tools with significant
popularity frequently benefit from strong community support, ex-
tensive documentation, and rich integration possibilities, making
them preferred candidates for further exploration. They give a great
perspective on how many practitioners interact with MLOps. The
goal of this research question is to determine which tools are most
often used in the literature. We can identify which tools are most
popular by looking at how frequently they are integrated.

3.2.2 RQ2: Which stages of the MLOps lifecycle do these tools cover
in the use cases reported in the academic literature? ML pipelines are
made up of several steps, ranging from data processing and model
training to model deployment and continuous monitoring. MLOps
tools rarely attempt to cover all of these stages comprehensively.
They generally specialise in a single or subset of these stages. Ana-
lyzing which stages each tool addresses reveals its function, scope
and challenges it is designed for. This understanding is crucial since,
as mentioned before, engineers and researchers tend to combine
multiple tools to get their final desired pipeline.

3.2.3 RQ3: What are the reported benefits and limitations of the
MLOps tool? MLOps tools offer a variety of features designed to
meet the diverse needs of the user. Following the analysis of existing
literature and documented user experiences, we examine common
trends in the advantages and limitations of various MLOps tools.

3.3 Pilot Study
Before starting the full review, we ran a pilot study with just the
first ten papers from the Google Scholar results, following Kitchen-
ham’s SLR guidelines [21]. A pilot study is important to validate our
methodology and ensure the consistency and reliability of selection
and extraction before full deployment. We subjected the selected
studies to the full review protocol. The pilot revealed that some
inclusion and exclusion criteria were incorrect, so we refined the
set of extraction fields by removing unnecessary items and adding
missing elements. We adjusted the search string, updated the in-
clusion rules, and modified the extraction spreadsheet. The study
design presented below is the final version after all of those tweaks
were applied.

3.4 Initial search
In February 2025, we conducted our literature search on Google
Scholar. We first identified relevant keywords and synonyms for
the MLOps literature. The search-term selection process involved
several iterations of testing various keywords in Google Scholar
and assessing whether the top results aligned with MLOps tooling
and lifecycle studies. The finalised search string is as follows:

Google Scholar Search String

(”MLOps” OR "machine learning operations") AND ("tool"
OR "application" OR "framework" OR "platform" OR
"pipelines") AND ("comparison" OR "evaluation" OR
"benchmark" OR "analysis" OR "empirical")

2
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The initial query returned 9 100 records; however, to keep the
review scope manageable and respect our time constraints, we
screened only the first ten pages of Google Scholar results and
reviewed 96 papers.

3.5 Application of Selection Criteria
For a paper to qualify as a primary study, it must satisfy all inclusion
criteria and none of the exclusion criteria.

Inclusion Criteria:
• I1: Papers that either analyse/compar e MLOps tools or

describe the development/implementation of MLOps tools,
frameworks, or pipelines.

• I2 Papers published in the last five years to ensure relevance
(i.e., 2020 and later)

Exclusion Criteria:
• E1: Papers only describing applications or projects using

an MLOps tool without detailed tool analysis.
• E2: Papers discussing MLOps as a concept/architecture or

highlighting the benefits of the MLOps culture.
• E3: The study must present original primary research; ex-

cluded are secondary studies such as literature reviews or
surveys.

• E4: Non-English literature.
• E5: The full text of the paper is not available for our insti-

tution.
The selection criteria I2, E4, and E5 are standard criteria for SLRs.

Criteria I1, E1, E2, and E3 ensure we exclude papers outside the
scope of this review (those lacking original primary research or
detailed analysis/development of MLOps tools) and thus focus only
on studies that directly contribute to our research questions.

3.6 Snowballing
We applied both backward and forward snowballing to expand the
results obtained through our initial search. Our snowballing process
follows the approach suggested by Wohlin et al. [46]. To perform
backward snowballing, we first reviewed the reference sections of
our initial set of 96 papers by manually assessing titles to determine
their relevance. If a title aligned with our research scope, we further
examined the corresponding paper’s abstract. Through this process,
we identified four additional papers that met our inclusion criteria.
On the other hand, during forward snowballing, we used Google
Scholar to find studies that cite our initial set of papers. From this
process, seven additional relevant papers were identified.

In both cases of forward and backward snowballing, we applied
the same selection criteria and data extraction procedures (3.5, 3.7)
as those used for the initial set of papers.We limited the snowballing
process to a single round since further iterations yielded minimal
additional relevant papers beyond those identified initially.

Figure 1 illustrates the complete selection process, from initial
paper retrieval, through screening and inclusion, to snowballing.

3.7 Data Extraction
In this phase of our study, we performed a systematic analysis of the
primary studies to extract data related to our research questions. As
detailed in subsection 3.3, our initial pilot study helped us refine the

Figure 1: Flow diagram showing selection process record
retrieval, screening, inclusion, and citation snowballing steps
for the MLOps literature review

data extraction strategy. For each research question, we extracted
a predetermined set of information from every primary research
paper and recorded it in spreadsheet. With respect to RQ1, we
identified tools that were actively implemented, excluding tools
that were only mentioned. This distinction enabled us to evaluate
the researchers’ hands-on experienceswith the tools. As for RQ2, we
noted the tools’ specific use cases mentioned in the paper. Finally,
for RQ3, we gathered information on the reported benefits and
limitations of each tool by analysing the justifications for their
selection and the challenges encountered during their application.
Table 1 lists the data extraction fields used.

Table 1: Data extraction fields

Field Description

Name Name of the MLOps tool
Uses Practitioner use cases
Pipeline stage covered Stage(s) of the MLOps lifecycle addressed
Paper Citation of the academic study
Benefits Reported benefits of the tool
Limitations Reported limitations or challenges
Notes Additional observations or context

3.8 Data Synthesis
3.8.1 RQ1: Which tools employed in MLOps workflows are most
frequently reported in academic literature? In this stage of our study,
we synthesise the data extracted from the selected primary research
papers to address our research questions. To represent our findings
for RQ1, we constructed Figure 2, a frequency graph that lists each

3
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tool alongside the number of times it was used in the reviewed lit-
erature. This graph provides a quantitative measure of each MLOps
tool’s popularity, further details and interpretation are presented
in the Results and Discussion sections.

3.8.2 RQ2 To address RQ2, we categorised the tools based on
their respective use cases, according to the MLOps components as
defined by Najafabadi et al. [32]. In this section, we list the selected
subset of the original components whilst adapting their names
and responsibilities to our context. We have also introduced a new
component, Visualisations, to better capture gaps in the existing
architecture.

Table 2 summarises the MLOps lifecycle categories that emerged
from the primary studies discussed in this section.

3.8.3 RQ3 To answer RQ3 we applied a descriptive synthesis,
which means we looked for patterns in descriptions rather com-
bining numerical results. First, we copied every sentence that men-
tioned a benefit or limitation of a tool into a spreadsheet. We then
grouped together statements that conveyed the same idea, allowing
us to identify benefits and limitations that appeared across several
studies, as well as those mentioned only once. Finally, we compiled
a table for every tool that lists these combined benefits and limita-
tions so readers can see at a glance what the literature agrees on
for each tool. This analysis helped us capture the context of tool
selection, including the rationale behind their adoption and the
challenges associated with their use.

3.9 Study Replicability
To ensure full replicability of our review, we have made a public
Zenodo repository [28] with a spreadsheet that documents every
step of the study. It comprises four sheets:

(1) Paper Selection – the complete set of Google Scholar
search results, showing whether each paper was included
or excluded from our review and the exact criterion applied.

(2) Selected Papers – all papers that passed screening, indi-
cating whether they came from the primary search or from
forward/backward snowballing, along with key metadata
(author, publication year, and so on).

(3) Extraction – the raw data taken from each selected paper:
tool names, quoted passages, reported benefits or limita-
tions, and possible dependencies or integrations.

(4) Synthesis – a consolidated view that maps every extracted
tool to the relevant component of the MLOps architecture
as well as summaries of the common advantages and draw-
backs. Key synthesis results are presented in this paper,
while the full mapping is available in the supplementary
material [28].

Researchers can follow the study design and the data in the
provided sheets to reproduce our search, screening, extraction, and
synthesis processes or to extend the analysis.

3.10 Threats to Validity
In this section, we follow the threat classification schemes for ex-
periment validity described by Ampatzoglou et al. [3] and outline
the threats that may affect the validity of our research.

Table 2: MLOps lifecycle categories observed in the primary
studies

Component Responsibility

Orchestrator Provides system-wide orchestration and
schedules multiple models while balancing
throughput and latency.

Raw Data Store Holds raw source data; needs specialised ver-
sioning tools because datasets exceed typical
Git size limits.

Data Preprocessor Transforms, cleans, and validates data before
it becomes training input.

Dataset Reposi-
tory

Stores and versions datasets; relies on large-
file platforms.

Feature Store Computes, stores, and serves reusable fea-
tures with low latency.

Artefact Reposi-
tory

Keeps packaged or containerised ML compo-
nents that include a model.

ML Metadata
Repository

Tracks training metadata for experiment
tracking and model performance.

Code Repository Versions source code, configuration files, and
related artefacts.

Model Repository Versions trained models together with basic
metadata such as version numbers.

ML Training
Pipeline (Online)

Automates continuous model training at run-
time in production.

ML Experiment
Pipeline (Offline)

Supports manual experimentation and train-
ing during design time.

MLOps User Inter-
action Manager

Enables interaction between the MLOps team
and the platform.

ML Pipeline Editor Builds, tests, and packages pipeline code into
containers or similar environments.

Model Deployer Deploys a trained model and its dependencies
to production.

Model Evaluator Measures and assesses model performance.
Runtime Model
Monitor

Continuously watches serving performance
and infrastructure metrics.

Visualisation Presents dashboards and graphs for experi-
ments, metrics, and system status.

End-to-End Covers the full ML workflow from data inges-
tion to inference, though most tools still leave
gaps.

Managed End-to-
End

Provides an end-to-end pipeline fully man-
aged by the platform, automating infrastruc-
ture, execution, and monitoring; often re-
quires auxiliary services for complete cover-
age.

3.10.1 External validity External validity relates to the generalis-
ability of our systematic literature review’s findings. For our pri-
mary studies to accurately represent the MLOps field and draw
correct conclusions, it is essential that these studies reflect the di-
verse MLOps landscape. One threat to generalisability is that the
limitations reported in the literature may be based on older versions
of MLOps tools, thereby inaccurately representing their current

4
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state. Such limitations might have already been addressed by the
developer and thus may no longer hold.

Another threat comes from the sheer number of results returned
by Google Scholar. Its proprietary relevance ranking does act as
a partial mitigation by prioritizing influential papers first. Never-
theless, we reviewed only the first ten result pages, covering 96
papers, so some relevant studies may have been missed and this
could introduce selection bias. A broader search by screening more
Google Scholar pages would mitigate this limitation.

3.10.2 Internal validity Internal validity examines whether the
study’s design and execution provide a confident basis for linking
causes with effects. A key threat in our review is the process of
selecting appropriate papers and formulating an exhaustive set of
search terms. Vital studies might be missed if the search terms are
not thorough, which could introduce bias. In order to mitigate this
threat, we pre-identified a number of key papers that needed to be
on our final list of papers.

Another threat concerns our tool–component heatmap (Figure
3). We can map only the capabilities that authors explicitly describe,
so the heatmap may miss components that a tool supports but were
not used in the included studies. When an author employs only
a subset of the tools capabilities, any unmentioned components
are left out, which makes the mapping non-exhaustive and might
under-represent the true scope of certain tools.

3.10.3 Construct validity Construct validity concerns how well
our measures and constructs align with the theoretical concepts we
intend to study. A threat here is inherent in the source literature:
many academic papers emphasise implementing MLOps pipelines
or addressing broader issues rather than critically evaluating the
tools themselves. This tendency often leads to detailed reporting on
the benefits while underreporting limitations, which may result in
conclusions that do not accurately capture the tool’s effectiveness.

3.10.4 Conclusion validity Conclusion validity focuses on the ac-
curacy of the deductions generated from our data analysis. Our
conclusions, which are based on frequency counts, categorisation
mappings, and feature evaluations, are meant to be rational. How-
ever, verifying that the data analysis procedures are sound and
executed correctly is crucial to confirming the validity of our find-
ings. Finally, the extraction and synthesis process was not reviewed
by a third party, which could introduce self-bias.

4 Results
In this section, we present the outcomes of our SLR structured
by three research questions. Section 4.1 (RQ1) reports the most
frequently mentioned MLOps tools (Figure 2); Section 4.2 (RQ2)
examines tool capabilities across pipeline stages and categories
(Figures 3 and 4); and Section 4.3 (RQ3) synthesizes reported ben-
efits and limitations (Tables 3–10). Further discussion appears in
Section 5.

Figure 2: Top 10 MLOps tools ranked by number of mentions
in primary studies

4.1 RQ1: Which tools employed in MLOps
workflows are most frequently reported in
academic literature?

Our first research question aims to identify the most widely used
MLOps tools based on evidence from academic studies. In order to
determine the prevalent tools, Figure 2 presents a bar graph show-
casing tool usage based on our primary data sources. As explained
previously, each tool had to be both described in the literature
and practically applied by the authors for it to be included in our
study. A significant portion of the literature focused on authors re-
searching multiple tools in order to implement an MLOps pipeline.
In these studies, the literature review section typically describes
various MLOps tools and evaluates them based on the features
offered. In our analysis, we only listed the tools that were actually
implemented in their final pipeline. As shown in Figure 2, MLflow
emerged as the most commonly implemented tool, appearing 16
times, followed by DVC and Kubeflow Pipelines, each appearing 10
times. Further interpretation is provided in the discussion section.

4.2 RQ2: Which stages of the MLOps lifecycle
do these tools cover in the use cases
reported in the academic literature?

MLOps pipelines encompass a range of stages, including data in-
gestion, pre-processing, model development, training, validation,
deployment, and ongoing monitoring. A heatmap (Figure 3) was
created to visualise what component(s) each extracted MLOps tool
fulfils, along with the frequency of each tool’s implementation
across the reviewed studies. Analysing the stages supported by
each tool revealed common areas of focus among MLOps solu-
tions. Overall, very few tools cover the entire pipeline, as most
specialise in one or more phases. Since MLOps tools can address
several components, authors may discuss only a subset. As a result,
the figure may omit certain stages a tool could cover, making our
assessment of functionality incomplete. Throughout this paper we
use the terms “stage”, “phase”, and “component” interchangeably
to refer to one functional step in that lifecycle.

Furthermore, Figure 4 presents a bar graph of MLOps tool counts
grouped by broad categories. These categories are adapted from
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Figure 3: Heatmap illustrating MLOps tools mapped across different MLOps pipeline phases, showing which phase(s) each tool
supports. Colour intensity represents the number of times each tool was implemented.

the taxonomy proposed by Najafabadi et al., who originally defined
six groups to classify MLOps components. To better reflect our
corpus, we both added two new groups—End-to-End and Managed
End-to-End—and removed unused groups such as Data Curation.
The full set of categories is:

• End-to-End
• Managed End-to-End
• Storage and Versioning
• Infrastructure and Supporting Services
• Inference
• ML Training

This categorization is primarily intended to facilitate the or-
ganization and presentation of our findings in this paper. While
individual tools may fall under multiple MLOps components, we as-
sign each tool to a single category to provide a clear and high-level
overview of the MLOps landscape.

4.3 RQ3: What are the reported benefits and
limitations of the MLOps tools?

The following Tables 3–10 present a synthesis of the reported ben-
efits and limitations of each MLOps tool identified in our review,
thereby addressing Research Question 3.
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Figure 4: MLOps tool count grouped by category

These tables are grouped according to the categories defined in
Section 4.2 (End-to-End, Managed End-to-End, Storage and Version-
ing, Infrastructure and Supporting Services, Inference, ML Train-
ing), which allows for straightforward comparison of the practical
considerations involved in tool selection and implementation. Each
table organises tools by one of these categories.

These summaries are drawn from direct quotations in the source
literature, capturing the most common insights authors reported
from academic projects or industrial deployments. The complete
set of quotations, tools, and source papers is available in the accom-
panying supplementary sheets.

The tables are followed by Section 5, where we delve deeper into
the implications of these findings.

4.3.1 Infrastructure and Supporting Services

Apache Airflow is an open-source platform for orchestrating
production workflows and data pipelines [50].

ArgoWorkflow ArgoWorkflow is a container-native workflow
engine for orchestrating parallel jobs on Kubernetes [30]. By com-
bining Argo Events for webhook-triggered workflows and Argo
Workflow for execution, developers can automate the full ML lifecy-
cle in a reproducible, scalable, and hands-off manner. This includes
training, evaluation, and deployment. While production environ-
ments can benefit from such pipelines for mature, production-ready
teams, it is not recommended to incorporate such an environment
in the early stages of ML services or businesses [30].

Kubeflow Pipelines handles managing and orchestrating con-
tainerised workloads [15] while taking care of model training, de-
ployment, and coordination [24]. Since it runs on top of Kubernetes,
it lets users codify preprocessing, training, and deployment steps in
a single UI and execute many pipelines in parallel. Because every
component ships as a Kubernetes resource, the same pipeline runs
on-prem or in any managed Kubernetes service. It also has auto-
scaling pods, notebook sessions provided by Jupyter, experiment
tracking, hyperparameter tuning, and pluggable serving (Kube-
flow’s own KServe or other solutions such as Seldon Core), which
all sit behind the central dashboard.

Prefect Core is a pipeline orchestrator with a modern Python
API that keeps code readable and flexible when workflows are
highly dynamic [11].

ZenML links the orchestration layer with an artefact store so
that a stack can swap orchestration, or any other component, with-
out rewriting user code [5].

CML enables CI/CD for ML projects. It wires continuous inte-
gration to ML experiments, tracking changes and auto-generating
metric reports [35].

Gradio enables fast creation of interactive web interfaces for
model demos and evaluation without touching HTML, CSS, or
JavaScript [15].

TensorBoard is TensorFlow’s official visualisation toolkit, offer-
ing interactive exploration of computation graphs, layer structures,
and distributions of weights and biases through histograms. Ten-
sorBoard also provides real-time plotting of training metrics such
as loss and accuracy over time [47].

4.3.2 Managed End-to-End

AzureML is a managed end-to-end service; users still provision
the workspace, storage, networking, and container registry either
interactively or through infrastructure-as-code [29].

AWS SageMaker is Amazon’s cloud platform for building, train-
ing, tuning, and deploying models in a hosted production environ-
ment [34].

ClearML provides semi-automated experimental run tracking
and auditing, capturing comprehensive metadata, parameters, and
metrics across popular Data Science tools. It relies on a dedicated
central web server underpinned by a MongoDB database, an Elastic-
search deployment, and cloud object storage for artefact archiving,
enabling end-to-end traceability and auditability of experiments
[40].

4.3.3 End-to-End

MLflow is an end-to-end tool made of multiple modules [9]
which was initially started as an open-source platform to provide
comprehensive experiment tracking capabilities [25][31][5][44].
It has grown to cover most of the MLOps pipeline through the
inclusion of the following components. The MLFlow Tracking com-
ponent records parameters, metrics, and artefacts for every run
[40], ensuring a complete workflow history.MLFlow Projects encap-
sulate data science code and dependencies, enabling reproducible
execution across diverse environments. MLflow pipeline involves
processing, cleaning, transforming, training models, and evaluating
them, ensuring large-scale ML model deployment. MLFlow Models
then offers a standardised structure for packaging machine learning
models and facilitates seamless deployment in various serving in-
frastructures [9]. Finally,MLFlow Registry serves as a unified model
store, providing versioning, annotation, stage transitions, and the
promotion of specific model versions to “Production” for batch
or real-time inference [31][39]. Autologging further streamlines
experiments by automatically capturing parameters and metrics
from supported ML libraries [5].
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Neptune.ai positions itself as a complete platform that spans
data versioning, testing, deployment, and monitoring [43].

Pachyderm offers GUI-based notebook services, experiment
tracking, and hyperparameter tuning [23].

Polyaxon is an open-source, Kubernetes-native end-to-endMLOps
platform focused on experiment tracking, visualisation, parallel
executions and hyperparameter optimisation. Its main focus is
parallelisable experiment tracking, where it attempts to provide
computationally efficient mechanisms for running and interpreting
parallel ML experiments at scale. While Polyaxon’s core and exper-
imentation tools are open source, its automation and management
features are not [23].

TensorFlowExtended (TFX) offers a production-grade pipeline
implementation for TensorFlow models [20].

Google Vertex AI is part of GCP, merging AutoML and AI Plat-
form behind one API, client library, and UI [41][29]. TheWorkbench
offers Jupyter notebooks [8] and AutoML streamlines training, ex-
periment tracking, and metadata management. A Model Registry
manages versions for online or batch prediction, while the Pipeline
view visualises step dependencies, integrated logging, and moni-
toring track performance over time.

4.3.4 ML Training

Katib is part of Kubeflow. It automates hyperparameter tuning
across frameworks including TensorFlow, MXNet, PyTorch, and
XGBoost [17].

4.3.5 Storage and Versioning

Weights & Biases is cited as an ML metadata repository, yet
the sources offer no elaboration [5].

Dagshub hosts data repositories and models for collaborative
versioning. Some authors store all pipeline outputs remotely in it
[31][2].

DVC extends Git to manage large datasets and model files, en-
abling version control of large data alongside code [31] [4] [25]
[9] [36] [7][20][15]. Consequently, its Git-like workflow simplifies
adoption for users familiar with Git [4]. DVC’s pipeline feature
modularizes data processing into stages with explicit input-output
dependencies and parameterisation, ensuring reproducibility, au-
tomation, and reusability across projects [4]. It also supports ex-
periment tracking and storing metadata within Git, while actual
data resides in DVC storage, with metadata files orchestrating data
retrieval [35].

Feast provides both offline and online feature storage, keeping
historical as well as live data in sync [44]. One paper mislabels it
as a performance monitoring tool [47].

GTO is Iterative’s GitOps-based model registry. It eliminates
the need for separate servers or databases by leveraging Git and
DVC repositories and provides streamlined support for promoting
models through designated repository branches and stages [35].

MinIO is an S3-compatible object store that keeps artefacts and
metadata from ZenML and MLflow but can host any data [5].

4.3.6 Inference

Metaflow is a framework for creating and executing data sci-
ence workflows in local environments and scaling them to the cloud
with ease [40].

KServe originates from the Kubeflow ecosystem and wraps
models as web services on Knative/Istio. This results in autoscaling,
isolation, and an event-driven path to downstream monitoring
[24][20][17].

BentoML is a model serving tool that bundles a trained model
and its dependencies into a production-ready service [40][39].

Seldon Core is a model deployment tool that exposes models
as web services [11] with robust support for Kubernetes [24].

Evidently is an open-source model monitoring library that gen-
erates predefined monitoring reports with a few lines of code. It can
automatically detect drift in input data, target values, and predic-
tions, and supports multi-model dashboards by calculating metrics
across multiple models with a single monitor [2][44][24].

Streamlit provides a quick route to deploy ML applications
through a simple Python interface [2].

5 Discussion
The following subsections are organised around our three research
questions and draw directly on the synthesis captured in Tables
1–8. Each benefit extracted from the studies is labelled B1, B2, . . .
and each limitation as L1, L2 and so on. Thus, a reference such
as B31 sends you to the 31st benefit row, while L17 points to the
17th limitation. To examine the supporting evidence, consult the
corresponding rows in Tables 1–8, where the summarised finding
and the primary paper that reported it are.

5.1 RQ1 – Which tools employed in MLOps
workflows are most frequently reported in
academic literature?

Across the primary studies, four tools stand out: MLflow, DVC,
Kubeflow Pipelines, and AWS SageMaker as shown in Figure 2.
The first three are fully open-source, while AWS SageMaker is a
proprietary cloud service. This divide reflects a familiar compromise
in MLOps practice: practitioners prefer community-maintained
tools for tasks like experiment tracking and data versioning but
often turn to commercial platforms when they need infrastructure
that scales quickly and comes with operational support.

Both MLflow and Kubeflow are classified as end-to-end plat-
forms, providing experiment tracking, model packaging, and de-
ployment in one bundle. However, their design philosophies diverge
significantly. MLflow focuses on accessibility: it is easy to use, has
a straightforward web UI, thorough and substantial documentation,
wide storage-backend support, and a lively community (B24–B30).
Kubeflow takes a different approach. It is rooted in Kubernetes and
focuses more on customisability with fine-grained control, modular
components, and automatic scaling (B3–B8). However, it demands
a tougher setup and steeper operational know-how (L3–L5). The
fact that both tools top the frequency chart suggests that while
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some users prefer easy-to-use tools and others value customisable
options, there is room for both approaches to succeed.

DVC is a notable outlier among the most cited tools, as it tackles
only a single stage of the MLOps life cycle, data storage and ver-
sioning, and yet it appears almost as often as the full end-to-end
platforms. Synchronising large data artefacts with code has been
a historic pain point in ML. Authors repeatedly select DVC for its
easy-to-use Git-like interface (B45) as well as pipeline caching and
serverless architecture. A recurring pairing was the adoption of Git
for code with DVC for large data because of Git’s size limits. Git LFS
was meant to alleviate this struggle, but unlike Git LFS, DVC needs
no extra server, a difference reviewers flag as decisive. L29–L30)
confirm that none of the other surveyed tools offer a comparable
alternative.

Another reason for MLflow’s popularity is that, even though it is
open-source, it remains a mature, well-established platform trusted
by leading companies and backed by both a strong community and
Databricks (B26). Its popularity feeds a loop:more users attractmore
contributors, the codebase improves, and the project becomes even
more appealing, which leads the community to further grow. The
same holds true for Kubeflow (B4). Some projects, however, are less
attractive because of their "uncertain vitality", meaning that their
long-term health is harder to predict; Polyaxon, for instance, relies
on a comparatively small contributor base (L27). Lower adoption
means fewer contributors, slow progress, and even less visibility;
a feedback loop in reverse that keeps new users away. In practice,
the presence of an active maintainer community weighs heavily
when choosing a tool for the long haul (B26, B4). MLflow does
not just entice developers who want a self-hosted solution, since
developers who prefer to skip infrastructure work can opt for a
managed MLflow provided by Databricks, which sidesteps the need
to run and maintain a separate tool (L16).

The widespread use of AWS SageMaker highlights the ongoing
significance of managed services (Figure 2). Managed MLOps plat-
forms such as SageMaker remain popular because they include a
wide array of pre-integrated pipeline components, such as a fea-
ture store, model registry, and CI/CD templates (B17). Companies
accept the subscription fee and the inherent risks of vendor lock-in
because the alternatives present significant challenges and costs
(L10, L12, L9, L15). A managed service hides the heavy work of
provisioning and securing compute, storage, and networking, and it
scales on demand (B18, B15, B16, B23). The same attraction applies
to the managed stacks from Azure ML (B14) and Google Cloud
Vertex AI (B22). Organisations that are unwilling to rely on a third-
party cloud provider often choose to build an in-house pipeline
from open-source projects such as MLflow for experiment tracking,
Kubeflow for orchestration, and DVC for data versioning. How-
ever, this option demands far more integration effort and long-term
maintenance and may be better suited to larger teams and more
mature projects (L3, L29, L19, L16).

5.2 RQ2 – Which stages of the MLOps lifecycle
do these tools cover in the reported use
cases?

Mapping each tool to the taxonomy defined in Section 2 reveals
that no single solution addresses the entire ML lifecycle.. However,

this is more due to what the papers mention than what the product
definitively offers. Kubeflow excels at orchestration (B4), MLflow
at experiment tracking (B28), while DVC and Feast handle data and
feature management, respectively (B45, B57).

AWS SageMaker bundles a model registry, feature store, and
deployment tools, yet teams still turn to third-party services for
granular security and local runs (L10–L12). The component that
offers the least coverage is in feature stores and runtimemonitoring;
outside of Feast and Evidently, non-managed options are almost
nonexistent (Tables 6 and 7). Consequently, multi-tool pipelines are
the norm, underpinning the importance of effective tool integration.

While classifying tools, we found one component that did not fit
cleanly into Najafabadi et al.’s [32] component architecture: visu-
alisation dashboards such as TensorBoard, Weights & Biases, and
Gradio. The closest existing component was Runtime Monitoring,
which does not really capture their purpose, so we introduced a
dedicated visualisation component instead.

Across all reviewed papers, theMLMetadata Repository (Experiment-
tracking) stage is addressed the most. This dominance is caused
by the ubiquity of MLflow, making it a default choice for an exper-
iment tracking tool that is open source. Managed solutions such
as SageMaker and Azure ML (B17, B16) further contribute to its
widespread adoption. Reliable metadata is essential for reproducibil-
ity, auditability, and model evaluation; consequently, practitioners
consistently prioritise this component.

Yet orchestration tools sit a close second: they are the "glue" that
binds data prep, training, and deployment into a runnable pipeline,
so virtually every study that examines end-to-end workflows also
highlights orchestrators such as Kubeflow, Argo, or similar sched-
ulers.

5.3 RQ3 – What are the claimed benefits and
limitations of the MLOps tool?

5.3.1 Security andManaged Platform Trade-offs MLflow lacks auto-
matic data versioning (L17), which explains why many studies pair
it with DVC (B45–B49). It is also missing role-based access control
(L19). In contrast, AWS SageMaker covers that gap through IAM in-
tegration (B19). A well-established trade-off emerges: open-source
tools need extra engineering to meet enterprise-grade security,
while cloud platforms shift that work to the provider at the cost
of vendor lock-in. Even then, the cloud does not guarantee full
coverage. For example, Google’s Vertex AI still trails Azure ML and
SageMaker on security, user control, and governance despite tying
you to Google’s stack.

5.3.2 Post-deployment Monitoring Evidently is the only tool that
comes with a drift detection feature out of the box (B67–B71), and
it works only for tabular data (L37). The limited findings indicate
that post-deployment observability is still an emerging component
of the ecosystem.

5.3.3 Prerequisite Knowledge A common limitation noted among
tools is the required prerequisite knowledge. Pachyderm requires
Helm and cloud-storage expertise (L23), while both Kubeflow and
Argo Workflows demand solid Kubernetes and containerisation
experience (L3, L7–L8). Several other services, including Feast’s SDK
(L34), Weights & Biases’ client code (L33), Neptune’s Python API
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(L22) and SageMaker’s SDK (L11), call for advanced programming
skills. These findings show that tool comparison should not focus
solely on a tool’s features and limitations, but it must also consider
the skills a team possesses.

5.3.4 Integration and Flexibility Easy integration and language
agnosticism are among the most frequently praised benefits. Or-
chestrators such as Kubeflow Pipelines are applauded for both their
cloud-agnostic Kubernetes foundation and their seamless hooks
into TensorFlow Extended (B3, B6), while managed stacks win
favour largely because of the way they slot into their parent ecosys-
tems—AWS SageMaker’s tight coupling with IAM and the rest of the
AWS suite being a prime example (B19). At the experiment-tracking
layer, MLflow extends this integrative spirit through container-
friendly, self-hosted deployments and pluggable back-end stores
that work just as well with S3, Azure Blob, on-prem NFS, or SQL-
compatible databases (B25, B30). Flexibility in storage backends is
also demonstrated by DVC’s remote options (B49) and MLflow’s
broad object-store support (B30). TFX is widely appreciated for its
portability, with pipelines that can run seamlessly across multiple
orchestrators rather than being locked to a single workflow engine
(B41). Finally, inference services such as BentoML embrace frame-
work diversity by supporting TensorFlow, PyTorch, Keras, XGBoost,
and more out of the box (B61). Taken together, these examples show
that the community consistently rewards tools that can drop into
existing tech stacks without forcing a wholesale rewrite in a particu-
lar language, framework, or cloud. In contrast, the lack of flexibility
is listed as a drawback by reviewers, specifically in TensorBoard
and TFX which tie users to the TensorFlow stack (L39, L28).

5.3.5 User Interfaces and Visualization Finally, visual dashboards
and UIs are widely appreciated. Kubeflow’s central UI (B7), Vertex
AI’s pipeline view (B22), MLflow’s experiment board (B24) and
Pachyderm’s web console (B35) are all reported as benefits, as they
improve ease of use.

6 Conclusion
This review set out to identify which MLOps-native tools appear
most frequently in academic work and to understand the reasons
for their uptake. A structured Google Scholar search, followed by
manual screening, filtered 96 papers to 41 selected studies which
were extracted and synthesised in a systematic, structured manner.

Our review confirms a clear pattern in recent MLOps practice.
MLflow, DVC, Kubeflow Pipelines, and AWS SageMaker appear
most frequently in MLOps pipelines because each addresses a
critical pain point: MLflow simplifies experiment tracking, DVC
brings Git-style version control to data, Kubeflow coordinates cloud-
agnostic workflows, and SageMaker lifts the infrastructure burden
through a fully managed service. Their popularity is sustained ei-
ther by lively open-source communities or by the deep resources
of a major cloud provider.

Yet none of these platforms covers the entire lifecycle on its own.
Researchers commonly assemble a mixed tool pipeline. Future work
should move beyond cataloguing tools to evaluating tool interoper-
ability and integration effort. This includes analyzing each tool’s
dependencies on external platforms and how easily it can be com-
bined with others to build coherent workflows. A useful extension

would be a comparative table showing dependency relationships
and open-source status, offering a clearer picture of ecosystem
maturity and possible vendor lock-in. Benchmarking integration
effort, metadata consistency, and runtime stability would offer the
objective metrics needed to help practitioners choose interoperable
end-to-end solutions.
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Table 3: Summary of MLOps Tools: Infrastructure and Supporting Service (Orchestrators)

Tool Benefits Limitations

Apache Airflow
B1 Open source software licensed under Apache

License 2.0 [50]
B2 Provides an intuitive web interface for visual-

ising and monitoring workflows [50]

L1 Installation and configuration can be complex
in real-world environments [50]

L2 The recommended installation method is com-
plicated in real-world situations [50]

Kubeflow Pipelines
B3 Cloud-agnostic architecture enabling it to be

executed on any cloud provider that supports
Kubernetes [17] [24] [20] with distributions
dedicated for major cloud providers [23].

B4 More mature and widespread than its competi-
tors and more specialised for ML when com-
pared with Flyte, Apache Airflow, and so on
[20].

B5 Abstracts away the complexity of dynamically
scaling workloads up or down via the Kuber-
netes engine. scale [13].

B6 Full end-to-end MLOps solution (Kubeflow
Notebooks, Kubeflow Pipelines, Katib) that is
highly customisable, through either KServe or
Seldon Core [23] and with seamless TFX inte-
gration [49].

B7 Offers an easily accessible and configurable
Kubeflow UI dashboard [23] [12].

B8 Strong security (multi-user isolation) [23].

L3 Difficult to set up with a non-trivial learning
curve. [23][42].

L4 "Everything in one package" and hence can
feel bloated compared with small, focused so-
lutions aimed at solving specific pain points
[42].

L5 Out-of-date documentation for many Kube-
flow features [23].

ZenML
B9 Simple local development (configured in three

simple commands) [5].
B10 Automatic deployment of a local MLflow track-

ing server [5].
B11 Easily expandable to support different orches-

tration components [5].

L6 Incomplete user management features [5].

Argo Workflow
B12 Workflow definitions enable straightforward

artefact storage and transfer between tasks.
B13 Supports fully automated, reproducible, and

scalable end-to-end model training, evaluation,
and deployment without manual intervention.

L7 Requires developers to manage containerisa-
tion complexity.

L8 Pipeline development and management de-
mand in-depth knowledge of Kubernetes and
associated tooling.
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Table 4: Summary of MLOps Tools: Managed End-to-End Platforms

Tool Benefits Limitations

AzureML
B14 Simple data imports and code-free drag-and-

drop tools for data cleaning and transforma-
tion [29].

B15 Quick and easy to set up for testing, orchestra-
tion, and robust security (network protection,
RBAC) [29].

B16 Fully complete security features. Only Mi-
crosoft Azure ML provides the ability for users
to set up network and data protection policies
as well as built-in RBAC features [29].

L9 Commercial product requiring an Azure sub-
scription [29].

SageMaker
B17 Robust and intuitive, offering feature parity

with Azure ML [29]. Includes a good set of
tools with its own model registry, a feature
store and lineage tracking logic. Handles step
creations and management as well as auto-
mates model deployment with CI/CD [34].

B18 Facilitates easy scalable training and deploy-
ment that reduces operation overhead [6].

B19 Seamless integration within the AWS ecosys-
tem [34] such as the ability to integrate with
AWS Single Sign-On (SSO) to manage identi-
ties and access [29].

B20 Provides abstracted tools for model tuning
[34].

L10 Requires a commercial licence [47].
L11 Requires programming skills and has less com-

prehensive documentation [47].
L12 If an organisation does not already use AWS

IAMor SSO, additional adoption andmigration
work is required [29].

Google Vertex AI
B21 Offers AutoML, integrates Jupyter Notebook

in Vertex AI Workbench and provides its own
model registry and pipelines. Integrates moni-
toring and logging capabilities [41].

B22 Easy to use central UI dashboard with visu-
alised workflows where users can monitor the
progress, review the execution history, and un-
derstand the dependencies between different
components of the pipeline [8].

B23 Flexible scalability and easy to use Kubernetes
cluster with a choice of machine hardware [8].

L13 Dataset preparation tasks are considered the
most "painful", with large multi-step coding
tasks without a visual drag-and-drop interface
when compared to Azure and AWS Sagemaker
[29].

L14 Lacks robust security control measures (IAM
and workspace separation) [29].

L15 Operates on a commercial, pay-as-you-go
model.
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Table 5: Summary of MLOps Tools: End-to-End Platforms

Tool Benefits Limitations

MLflow
B24 User-friendly with a UI providing visualisation

capabilities for easy data interpretation and analy-
sis, along with an intuitive web-based dashboard
[31][36][25].

B25 Completely open-source and self-hosting capabil-
ities while natively supporting container deploy-
ments [5][40].

B26 Strong vitality, since it is a well-established
tool used by many world-renowned companies,
backed by strong community support [5][11].

B27 Offers comprehensive and extensive documenta-
tion [11].

B28 Comprehensive Experiment Tracking with robust
logging and visualisation of metrics and artefacts,
which allows users to trace models to their train-
ing rounds via MLflow APIs/UI and to track al-
gorithms, hyperparameters, dataset versions, and
feature selections [31][4][49]. It is MLFow’s key
feature and module.

B29 Simplifies performance evaluation with enhanced
model performance monitoring. Moreover, it fea-
tures autologging and seamlessly integrates with
other monitoring tools for efficient model im-
provement [5][9][15][31].

B30 Flexible data storage options with support for pop-
ular cloud storage services (Amazon S3, Azure
Blob Storage, Google Cloud Storage) as well as
on-premise or hybrid options (SFTP, NFS), local
files, SQLAlchemy-compatible databases, or re-
mote tracking servers [36].

L16 Requires a dedicated server or additional web ser-
vice for collaboration, which complicates initial
setup and maintenance [4][40].

L17 Does not automatically reproduce data versions,
necessitating manual intervention for consistency
[36][4]. Relies on the user using other tools.

L18 Lacks in-built alerting based on monitoring for
insufficient resources [40].

L19 Does not offer role-based access or user isolation,
allowing unrestricted changes to experiments by
any user. [5][36].

L20 Lacks native collaboration features and automated
deployment tools [36].

L21 Certain advanced features or enterprise use cases
require a commercial licence [47].

Neptune
B31 Easy setup with a clear guide [47] and integrates

with tools like Google Colab, Git, and Docker [43].
B32 Complete MLOps platform: monitoring, data ver-

sioning, and testing in one solution [43].
B33 Open-source [47].
B34 Can be used for monitoring [43].

L22 Requires basic programming skills [43].

Pachyderm
B35 Provides GUI-accessible services for notebook ex-

perimentation, experiment tracking, and hyper-
parameter optimisation [23].

B36 Simple to parallelise experiments [23].

L23 Requires knowledge of, and manual configuration
for, cloud storage and Helm deployments [23].

L24 Entails a computationally heavy file system over-
head compared with Kubeflow and Polyaxon [23].

L25 Lacks "out-of-the-box" solutions.

Polyaxon
B37 Requires only basic Helm and Kubernetes opera-

tor knowledge [23].
B38 Provides a meticulous audit trail that enhances

reproducibility [23].

L26 Does not provide out-of-the-box scaling [24].
L27 Uncertain open-source vitality due to a weaker

community compared to Pachyderm and Kube-
flow [23].

TFX
B39 Automates regular retraining, evaluation, and de-

ployment [8].
B40 Supports distributed computing for large work-

loads [8].
B41 Portable and can be run on various orchestration

platforms such as Apache Airflow [8].

L28 Requires TensorFlow, which might be limiting for
non-TF use cases [20].14
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Table 6: Summary of MLOps Tools: Storage & Versioning

Tool Benefits Limitations

Dagshub
B42 Facilitates collaboration and versioning [31].
B43 Circumvents GitHub’s size limitations and in-

tegrates with DVC and MLflow [31][15].
B44 Offers a free integrated MLflow server and uni-

fied storage for data and metadata [2][15].

- -

DVC
B45 Easy to use as its DVC workflow is similar to

Git’s. This helps ease its adoption among users
familiar with Git [4].

B46 Modularises workflows into stages, ensuring
reproducibility and reducing manual errors
[4].

B47 Pipeline data can be automatically pulled from
a DagsHub repository so that the entire pro-
cess can be run using only a single command,
thus simplifying workflow execution [33].

B48 Caching for unchanged stages saves time and
minimises overhead [35].

B49 Flexible storage options (e.g., Google Drive,
HTTP, S3) without requiring a dedicated
server or GitLFServer [4].

L29 Requires manual updates for externally stored
data [4].

L30 File-level versioning can lead to extensive stor-
age use in environments with frequent file
changes and is not suited for versioning SQL
databases [4].

GTO
B50 Functions as a GitOps-based model registry,

removing the need for separate databases or
servers by leveraging Git and DVC [35].

B51 Supports promotion of models to specific
stages, facilitating deployment across desig-
nated environments [35].

B52 Seamlessly integrates with Iterative products
such as DVC and CML [35].

- -

MinIO
B53 S3-compatible storage solution optimised for

AI workloads [5].
B54 Used for storing artefacts and metadata gen-

erated by ZenML [43] and MLflow [4], and
suitable for general data.

- -

Weights & Biases
B55 Real-time experiment tracking with built-in

hardware usage monitoring [5].
B56 Free tier offers unlimited experiment runs and

100 GB of artefact storage. In addition, it in-
cludes dataset/model versioning, hyperparam-
eter optimisation, report generation, and a
model registry [5].

L31 Requires registration and a licence key for ini-
tial setup. The free plan is limited to personal
projects [5].

L32 Only the client application is open-source. The
server-side infrastructure is proprietary, limit-
ing self-hosting options [5].

L33 Demands advanced programming knowledge
for integration and usage [43][5].

Feast
B57 Manages historical and live data with of-

fline/online feature storage [44].
B58 Allows reuse of features across different ML

projects [47].
B59 Integrates with MLflow [44].
B60 Open-source [47].

L34 Requires advanced programming skills [47].
L35 Integration process is relatively complicated

[47].
15
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Table 7: Summary of MLOps Tools: Inference (Model Serving)

Tool Benefits Limitations

BentoML
B61 Open-source [40] and supports multiple frame-

works (TF, PyTorch, Keras, XGBoost) [39].
B62 Features automated micro-batching for better

API performance and cloud-native deployment
[40].

L36 Provides inference-only [40] and does not offer
an automatic deployment of models, as KServe
and Seldon Core do [24][20].

KServe
B63 Automatically wraps models as web services

and is easily integrated with Kubeflow [24].
B64 Provides scalable and isolated deployments

[17] with support for HTTP/gRPC APIs [24].

- -

Seldon Core
B65 Offers pre-packaged inference servers with ro-

bust Kubernetes support [11].
B66 Supports advanced metrics tracking via

Prometheus [11].

- -

Evidently
B67 Provides model monitoring for data, target,

and prediction drifts [2][44].
B68 Predefined monitoring reports can be gener-

ated with few lines of code [2].
B69 Enables a single monitor to calculate metrics

across multiple models [24].
B70 Integrates with Prometheus and Grafana for

interactive reports, scheduled tests, and result
logging [44].

B71 Automatically logs results as artefacts in
MLflow [44].

L37 Supports tabular data only. For image or text
data, consider Alibi Detect [24].
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Table 8: Summary of MLOps Tools: Inference (Model Deployment)

Tool Benefits Limitations

Metaflow
B72 Provides a framework for creating and execut-

ing data science workflows locally and scaling
to the cloud with ease [40].

B73 Rigorous checkpoint system enables great
tracking and logging [40].

B74 Fully integrated with AWS for automatic re-
source management and native parallelisation
via AWS Batch [40].

- -

Streamlit
B75 Simple interface for deployingML applications

to the cloud [2].
B76 Convenient GitHub integration streamlines de-

ployment workflows [2].

L38 1 GB limit for public application deployments
[2].

CML
B77 Manages ML experiments and tracks modifica-

tions automatically [35].
B78 Generates comprehensive reports with essen-

tial metrics and plots [35].
B79 Reports are created and displayed directly in

pull request comments, enhancing collabora-
tion and review efficiency [35].

- -

Table 9: Summary of MLOps Tools: Infrastructure and Supporting Services

Tool Benefits Limitations

Gradio
B80 Enables creation of interactive web interfaces

for model evaluation, demonstration, and de-
ployment without HTML/CSS/JS knowledge
[15].

- -

TensorBoard
B81 Visualisation toolkit for model graphs,

weight/bias histograms, and training metrics
[47].

B82 Provides full exploration and visualisation
functionality [47].

B83 Open-source and integrates withmultiple tools
and applications [47].

L39 Requires familiarity with TensorBoard tooling
and community support for effective use [47].
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Table 10: Summary of MLOps Tools: ML Training

Tool Benefits Limitations

Katib
B84 Optimises hyperparameters for frameworks

such as TensorFlow, MXNet, PyTorch, and XG-
Boost [17].

B85 Seamlessly integrates with Kubeflow [17].

- -

18


	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Research Goal
	3.2 Research Questions
	3.3 Pilot Study
	3.4 Initial search
	3.5 Application of Selection Criteria
	3.6 Snowballing
	3.7 Data Extraction
	3.8 Data Synthesis
	3.9 Study Replicability
	3.10 Threats to Validity

	4 Results
	4.1 RQ1: Which tools employed in MLOps workflows are most frequently reported in academic literature?
	4.2 RQ2: Which stages of the MLOps lifecycle do these tools cover in the use cases reported in the academic literature?
	4.3 RQ3: What are the reported benefits and limitations of the MLOps tools?

	5 Discussion
	5.1 RQ1 – Which tools employed in MLOps workflows are most frequently reported in academic literature?
	5.2 RQ2 – Which stages of the MLOps lifecycle do these tools cover in the reported use cases?
	5.3 RQ3 – What are the claimed benefits and limitations of the MLOps tool?

	6 Conclusion
	References

