
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle
Coverage, and Critical Insights

Zakkarija Micallef
Vrije Universiteit Amsterdam, The Netherlands

z.micallef@student.vu.nl

Abstract
Machine learning operations (MLOps) has become increasingly
critical as more organisations move machine learning models into
production. However, the growing landscape of MLOps solutions
has introduced complexity for practitioners trying to select appro-
priate tools. To investigate how and why these tools are adopted
in practice, this paper conducts a systematic review of academic
literature focused on MLOps tools. The analysis maps tools to
MLOps lifecycle stages to reveal their function, scope, and the chal-
lenges they are designed to address. It identifies usage trends and
synthesises reported benefits and limitations based on practical
implementations. The most commonly used components, accord-
ing to the findings, are orchestration frameworks, data versioning,
experiment tracking, and managed cloud platforms. No single tool
covers the entire lifecycle, so researchers often combine multiple
tools to build complete pipelines. This highlights the importance of
interoperability across MLOps tools in real-world MLOps pipelines.

Keywords
Systematic Literature Review, MLOps, tool taxonomy, lifecycle map-
ping, tool adoption, MLflow, Kubeflow

1 Introduction
In recent years, AI has experienced a dramatic surge in popularity.
As more companies deploy AI solutions, they quickly discover
that specialised infrastructure is essential to support these new
capabilities. However, many AI engineers and data scientists lack
the software-deployment expertise of operations teams, especially
when it comes to MLOps tools [14].

Traditionally, an operations team is in charge of tasks such as
deployment and ongoing monitoring [16]. To reduce software time-
to-value and create stronger collaboration between development
and operations, software companies frequently use DevOps. De-
vOps is described as a culture that emphasises continuous collabo-
ration throughout the software lifecycle. It involves practices like
Continuous Integration, which involves frequent code merges, and
Continuous Deployment, which automates the release process to
ensure software remains deployable.

MLOps refers to the entire lifecycle of the machine-learning
process, bridging the gap between data, development, and oper-
ations [22]. MLOps extends beyond applying DevOps principles
to machine learning (ML). It involves continuous integration and
continuous deployment automation for ML pipelines, orchestra-
tion of ML workflows, versioning of data, models, and code to
ensure reproducibility, continuous training to keep models up to
date, metadata tracking for experiment auditability, and continuous
evaluation and performance monitoring.

Despite the growing interest in MLOps, existing reviews often
remain high-level, focusing primarily on listing tools, comparing
surface-level features, or distinguishing between open-source and
proprietary solutions. However, there is limited synthesis of how
these tools are actually used in practice [37]. Most studies fail to
capture the practical experiences of teams deploying real-world ML
systems. This gap in the literature limits the ability of researchers
and practitioners to make informed choices based on implementa-
tion outcomes rather than tool specifications alone. In this paper, we
explore the range of MLOps tools referenced in academic literature
and examine their real-world applications. While other papers inte-
grate general-purpose DevOps tools such as Docker, Kubernetes,
Git, and Jenkins with ML-specific tools, our SLR (Systematic Litera-
ture Review) focuses exclusively on MLOps native tools that are
developed specifically for machine learning workloads, excluding
general-purpose tools. We explore how practitioners use these tools
in their pipelines, why they select specific MLOps solutions, and
the advantages and drawbacks they face in real-world scenarios.
Through this analysis, we aim to provide a clear view of the current
MLOps landscape.

2 Related Work
MLOps remains a vague umbrella term, with its scope and impli-
cations still ambiguous for both researchers and practitioners. To
bring clarity, Kreuzberger et al. [22] conducted mixed-method re-
search, where they combined a literature review, a tool review, and
expert interviews to create a comprehensive description of MLOps
that we adopt as our definition of MLOps in Section 1. Their work
has become a de facto standard, widely cited by other papers [10]
[45] [48]. While Kreuzberger et al. [22] identified principles, tech-
nical components, and roles of MLOps, we focus solely on the
technical elements that recur across the literature: CI/CD pipelines
for training and deployment, workflow orchestration, feature-store
systems, model-training infrastructure, model registries, metadata
stores, serving components, and monitoring tools. A synthesis of
prior surveys shows that these components consistently form the
backbone of MLOps solutions [37] [45] [48] [10] [32]:

• Data engineering
• Version control
• Hyperparameter tuning and experiment tracking
• CI/CD pipelines for training and deployment
• Workflow orchestration
• Model deployment/serving
• Automated testing and validation
• Continuous performance monitoring

Varon Maya’s [26] argues that bringing DevOps principles into
ML pushes organisations toward pipeline-like architectures: NVIDIA
[27], Facebook [19], Spotify [1] and Google [18] each describe a

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

flow that runs from data collection and feature engineering through
training, validation and model serving, occasionally adding feed-
back loops that trigger continuous retraining. This structure clari-
fies ownership, lets every stage use specialised tooling and aligns
with CI/CD automation. However, higher-level concerns such as
process orchestration and configuration management are largely
unaddressed with this pipeline architecture, creating challenges
for reproducibility and maintainability in complex ML systems.
Our systematic literature review (SLR) adopts the same pipeline
perspective, evaluating MLOps tools stage by stage.

In modern software development environments, multiple lan-
guages and libraries are combined. To determine which languages,
frameworks, and runtimes each tool supports, Wazir et al. [45]
looked at 22 open-source catalogues and research publications.
Given the frequent combination of Python, Java, R, and other spe-
cialised libraries, their findings highlight the need for MLOps plat-
forms to continue being language agnostic. Building on this, Ruf et
al. [38] conducted interviews and real-world trials to produce a de-
tailed feature matrix of API bindings and integration hooks offered
by each candidate tool. They show that lacking support for lan-
guages like R or Java can hinder collaboration between operations
and data science teams. Consequently, they recommend conducting
several iterative selection rounds before beginning work, ensuring
all departments agree on a unified toolchain.

In Recupito et al.’s review [37], thirteen prominent MLOps plat-
formsweremapped to the stage of theMLOps pipeline they support:
data management, model training, CI/CD, monitoring, and so on.
Their comparison shows that no single product spans the entire
lifecycle, so practitioners routinely assemble multi-tool pipelines.
Multiple studies [37] [38] [45] highlight the importance of evalu-
ating not just each tool’s individual strengths but also how well
they interoperate with other tools and the dependencies they intro-
duce. Interestingly, nearly 50% of the sources in Recupito et al. [37]
review are blog posts, underscoring how much MLOps expertise
circulates through informal channels rather than peer-reviewed
papers. While several recent papers embrace a multivocal approach
that blends academic and practitioner sources, our decision to focus
solely on academic papers means that some practitioner findings
may be missed.

Our SLR compares tools by the benefits and limitations that paper
authors explicitly report from their practical experience, in contrast
to the majority of previous reviews that compare tools based on
claimed features listed on the tool developer’s websites or their
official blogs. This method provides a more accurate understanding
of the practical experience and shortcomings of MLOps tools.

3 Study Design
3.1 Research Goal
This study presents a clear landscape of MLOps tools through a SLR
of academic papers. It examines the platforms and libraries adopted
by practitioners and analyzes which stages each tool addresses
to reveal its function, scope, and the challenges it is designed for.
The review also investigates the factors influencing tool adoption,
offering insights into the technologies most relevant to current
MLOps practices and how they integrate into real-world workflows.

3.2 Research Questions
3.2.1 RQ1: Which tools employed in MLOps workflows are most
frequently reported in academic literature? Tools with significant
popularity frequently benefit from strong community support, ex-
tensive documentation, and rich integration possibilities, making
them preferred candidates for further exploration. They give a great
perspective on how many practitioners interact with MLOps. The
goal of this research question is to determine which tools are most
often used in the literature. We can identify which tools are most
popular by looking at how frequently they are integrated.

3.2.2 RQ2: Which stages of the MLOps lifecycle do these tools cover
in the use cases reported in the academic literature? ML pipelines are
made up of several steps, ranging from data processing and model
training to model deployment and continuous monitoring. MLOps
tools rarely attempt to cover all of these stages comprehensively.
They generally specialise in a single or subset of these stages. Ana-
lyzing which stages each tool addresses reveals its function, scope
and challenges it is designed for. This understanding is crucial since,
as mentioned before, engineers and researchers tend to combine
multiple tools to get their final desired pipeline.

3.2.3 RQ3: What are the reported benefits and limitations of the
MLOps tool? MLOps tools offer a variety of features designed to
meet the diverse needs of the user. Following the analysis of existing
literature and documented user experiences, we examine common
trends in the advantages and limitations of various MLOps tools.

3.3 Pilot Study
Before starting the full review, we ran a pilot study with just the
first ten papers from the Google Scholar results, following Kitchen-
ham’s SLR guidelines [21]. A pilot study is important to validate our
methodology and ensure the consistency and reliability of selection
and extraction before full deployment. We subjected the selected
studies to the full review protocol. The pilot revealed that some
inclusion and exclusion criteria were incorrect, so we refined the
set of extraction fields by removing unnecessary items and adding
missing elements. We adjusted the search string, updated the in-
clusion rules, and modified the extraction spreadsheet. The study
design presented below is the final version after all of those tweaks
were applied.

3.4 Initial search
In February 2025, we conducted our literature search on Google
Scholar. We first identified relevant keywords and synonyms for
the MLOps literature. The search-term selection process involved
several iterations of testing various keywords in Google Scholar
and assessing whether the top results aligned with MLOps tooling
and lifecycle studies. The finalised search string is as follows:

Google Scholar Search String

(”MLOps” OR "machine learning operations") AND ("tool"
OR "application" OR "framework" OR "platform" OR
"pipelines") AND ("comparison" OR "evaluation" OR
"benchmark" OR "analysis" OR "empirical")

2



255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights Literature Review, May 2025, Vrije Universiteit Amsterdam

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

The initial query returned 9 100 records; however, to keep the
review scope manageable and respect our time constraints, we
screened only the first ten pages of Google Scholar results and
reviewed 96 papers.

3.5 Application of Selection Criteria
For a paper to qualify as a primary study, it must satisfy all inclusion
criteria and none of the exclusion criteria.

Inclusion Criteria:
• I1: Papers that either analyse/compar e MLOps tools or

describe the development/implementation of MLOps tools,
frameworks, or pipelines.

• I2 Papers published in the last five years to ensure relevance
(i.e., 2020 and later)

Exclusion Criteria:
• E1: Papers only describing applications or projects using

an MLOps tool without detailed tool analysis.
• E2: Papers discussing MLOps as a concept/architecture or

highlighting the benefits of the MLOps culture.
• E3: The study must present original primary research; ex-

cluded are secondary studies such as literature reviews or
surveys.

• E4: Non-English literature.
• E5: The full text of the paper is not available for our insti-

tution.
The selection criteria I2, E4, and E5 are standard criteria for SLRs.

Criteria I1, E1, E2, and E3 ensure we exclude papers outside the
scope of this review (those lacking original primary research or
detailed analysis/development of MLOps tools) and thus focus only
on studies that directly contribute to our research questions.

3.6 Snowballing
We applied both backward and forward snowballing to expand the
results obtained through our initial search. Our snowballing process
follows the approach suggested by Wohlin et al. [46]. To perform
backward snowballing, we first reviewed the reference sections of
our initial set of 96 papers by manually assessing titles to determine
their relevance. If a title aligned with our research scope, we further
examined the corresponding paper’s abstract. Through this process,
we identified four additional papers that met our inclusion criteria.
On the other hand, during forward snowballing, we used Google
Scholar to find studies that cite our initial set of papers. From this
process, seven additional relevant papers were identified.

In both cases of forward and backward snowballing, we applied
the same selection criteria and data extraction procedures (3.5, 3.7)
as those used for the initial set of papers.We limited the snowballing
process to a single round since further iterations yielded minimal
additional relevant papers beyond those identified initially.

Figure 1 illustrates the complete selection process, from initial
paper retrieval, through screening and inclusion, to snowballing.

3.7 Data Extraction
In this phase of our study, we performed a systematic analysis of the
primary studies to extract data related to our research questions. As
detailed in subsection 3.3, our initial pilot study helped us refine the

Figure 1: Flow diagram showing selection process record
retrieval, screening, inclusion, and citation snowballing steps
for the MLOps literature review

data extraction strategy. For each research question, we extracted
a predetermined set of information from every primary research
paper and recorded it in spreadsheet. With respect to RQ1, we
identified tools that were actively implemented, excluding tools
that were only mentioned. This distinction enabled us to evaluate
the researchers’ hands-on experienceswith the tools. As for RQ2, we
noted the tools’ specific use cases mentioned in the paper. Finally,
for RQ3, we gathered information on the reported benefits and
limitations of each tool by analysing the justifications for their
selection and the challenges encountered during their application.
Table 1 lists the data extraction fields used.

Table 1: Data extraction fields

Field Description

Name Name of the MLOps tool
Uses Practitioner use cases
Pipeline stage covered Stage(s) of the MLOps lifecycle addressed
Paper Citation of the academic study
Benefits Reported benefits of the tool
Limitations Reported limitations or challenges
Notes Additional observations or context

3.8 Data Synthesis
3.8.1 RQ1: Which tools employed in MLOps workflows are most
frequently reported in academic literature? In this stage of our study,
we synthesise the data extracted from the selected primary research
papers to address our research questions. To represent our findings
for RQ1, we constructed Figure 2, a frequency graph that lists each

3



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

tool alongside the number of times it was used in the reviewed lit-
erature. This graph provides a quantitative measure of each MLOps
tool’s popularity, further details and interpretation are presented
in the Results and Discussion sections.

3.8.2 RQ2 To address RQ2, we categorised the tools based on
their respective use cases, according to the MLOps components as
defined by Najafabadi et al. [32]. In this section, we list the selected
subset of the original components whilst adapting their names
and responsibilities to our context. We have also introduced a new
component, Visualisations, to better capture gaps in the existing
architecture.

Table 2 summarises the MLOps lifecycle categories that emerged
from the primary studies discussed in this section.

3.8.3 RQ3 To answer RQ3 we applied a descriptive synthesis,
which means we looked for patterns in descriptions rather com-
bining numerical results. First, we copied every sentence that men-
tioned a benefit or limitation of a tool into a spreadsheet. We then
grouped together statements that conveyed the same idea, allowing
us to identify benefits and limitations that appeared across several
studies, as well as those mentioned only once. Finally, we compiled
a table for every tool that lists these combined benefits and limita-
tions so readers can see at a glance what the literature agrees on
for each tool. This analysis helped us capture the context of tool
selection, including the rationale behind their adoption and the
challenges associated with their use.

3.9 Study Replicability
To ensure full replicability of our review, we have made a public
Zenodo repository [28] with a spreadsheet that documents every
step of the study. It comprises four sheets:

(1) Paper Selection – the complete set of Google Scholar
search results, showing whether each paper was included
or excluded from our review and the exact criterion applied.

(2) Selected Papers – all papers that passed screening, indi-
cating whether they came from the primary search or from
forward/backward snowballing, along with key metadata
(author, publication year, and so on).

(3) Extraction – the raw data taken from each selected paper:
tool names, quoted passages, reported benefits or limita-
tions, and possible dependencies or integrations.

(4) Synthesis – a consolidated view that maps every extracted
tool to the relevant component of the MLOps architecture
as well as summaries of the common advantages and draw-
backs. Key synthesis results are presented in this paper,
while the full mapping is available in the supplementary
material [28].

Researchers can follow the study design and the data in the
provided sheets to reproduce our search, screening, extraction, and
synthesis processes or to extend the analysis.

3.10 Threats to Validity
In this section, we follow the threat classification schemes for ex-
periment validity described by Ampatzoglou et al. [3] and outline
the threats that may affect the validity of our research.

Table 2: MLOps lifecycle categories observed in the primary
studies

Component Responsibility

Orchestrator Provides system-wide orchestration and
schedules multiple models while balancing
throughput and latency.

Raw Data Store Holds raw source data; needs specialised ver-
sioning tools because datasets exceed typical
Git size limits.

Data Preprocessor Transforms, cleans, and validates data before
it becomes training input.

Dataset Reposi-
tory

Stores and versions datasets; relies on large-
file platforms.

Feature Store Computes, stores, and serves reusable fea-
tures with low latency.

Artefact Reposi-
tory

Keeps packaged or containerised ML compo-
nents that include a model.

ML Metadata
Repository

Tracks training metadata for experiment
tracking and model performance.

Code Repository Versions source code, configuration files, and
related artefacts.

Model Repository Versions trained models together with basic
metadata such as version numbers.

ML Training
Pipeline (Online)

Automates continuous model training at run-
time in production.

ML Experiment
Pipeline (Offline)

Supports manual experimentation and train-
ing during design time.

MLOps User Inter-
action Manager

Enables interaction between the MLOps team
and the platform.

ML Pipeline Editor Builds, tests, and packages pipeline code into
containers or similar environments.

Model Deployer Deploys a trained model and its dependencies
to production.

Model Evaluator Measures and assesses model performance.
Runtime Model
Monitor

Continuously watches serving performance
and infrastructure metrics.

Visualisation Presents dashboards and graphs for experi-
ments, metrics, and system status.

End-to-End Covers the full ML workflow from data inges-
tion to inference, though most tools still leave
gaps.

Managed End-to-
End

Provides an end-to-end pipeline fully man-
aged by the platform, automating infrastruc-
ture, execution, and monitoring; often re-
quires auxiliary services for complete cover-
age.

3.10.1 External validity External validity relates to the generalis-
ability of our systematic literature review’s findings. For our pri-
mary studies to accurately represent the MLOps field and draw
correct conclusions, it is essential that these studies reflect the di-
verse MLOps landscape. One threat to generalisability is that the
limitations reported in the literature may be based on older versions
of MLOps tools, thereby inaccurately representing their current

4



531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights Literature Review, May 2025, Vrije Universiteit Amsterdam

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

state. Such limitations might have already been addressed by the
developer and thus may no longer hold.

Another threat comes from the sheer number of results returned
by Google Scholar. Its proprietary relevance ranking does act as
a partial mitigation by prioritizing influential papers first. Never-
theless, we reviewed only the first ten result pages, covering 96
papers, so some relevant studies may have been missed and this
could introduce selection bias. A broader search by screening more
Google Scholar pages would mitigate this limitation.

3.10.2 Internal validity Internal validity examines whether the
study’s design and execution provide a confident basis for linking
causes with effects. A key threat in our review is the process of
selecting appropriate papers and formulating an exhaustive set of
search terms. Vital studies might be missed if the search terms are
not thorough, which could introduce bias. In order to mitigate this
threat, we pre-identified a number of key papers that needed to be
on our final list of papers.

Another threat concerns our tool–component heatmap (Figure
3). We can map only the capabilities that authors explicitly describe,
so the heatmap may miss components that a tool supports but were
not used in the included studies. When an author employs only
a subset of the tools capabilities, any unmentioned components
are left out, which makes the mapping non-exhaustive and might
under-represent the true scope of certain tools.

3.10.3 Construct validity Construct validity concerns how well
our measures and constructs align with the theoretical concepts we
intend to study. A threat here is inherent in the source literature:
many academic papers emphasise implementing MLOps pipelines
or addressing broader issues rather than critically evaluating the
tools themselves. This tendency often leads to detailed reporting on
the benefits while underreporting limitations, which may result in
conclusions that do not accurately capture the tool’s effectiveness.

3.10.4 Conclusion validity Conclusion validity focuses on the ac-
curacy of the deductions generated from our data analysis. Our
conclusions, which are based on frequency counts, categorisation
mappings, and feature evaluations, are meant to be rational. How-
ever, verifying that the data analysis procedures are sound and
executed correctly is crucial to confirming the validity of our find-
ings. Finally, the extraction and synthesis process was not reviewed
by a third party, which could introduce self-bias.

4 Results
In this section, we present the outcomes of our SLR structured
by three research questions. Section 4.1 (RQ1) reports the most
frequently mentioned MLOps tools (Figure 2); Section 4.2 (RQ2)
examines tool capabilities across pipeline stages and categories
(Figures 3 and 4); and Section 4.3 (RQ3) synthesizes reported ben-
efits and limitations (Tables 3–10). Further discussion appears in
Section 5.

Figure 2: Top 10 MLOps tools ranked by number of mentions
in primary studies

4.1 RQ1: Which tools employed in MLOps
workflows are most frequently reported in
academic literature?

Our first research question aims to identify the most widely used
MLOps tools based on evidence from academic studies. In order to
determine the prevalent tools, Figure 2 presents a bar graph show-
casing tool usage based on our primary data sources. As explained
previously, each tool had to be both described in the literature
and practically applied by the authors for it to be included in our
study. A significant portion of the literature focused on authors re-
searching multiple tools in order to implement an MLOps pipeline.
In these studies, the literature review section typically describes
various MLOps tools and evaluates them based on the features
offered. In our analysis, we only listed the tools that were actually
implemented in their final pipeline. As shown in Figure 2, MLflow
emerged as the most commonly implemented tool, appearing 16
times, followed by DVC and Kubeflow Pipelines, each appearing 10
times. Further interpretation is provided in the discussion section.

4.2 RQ2: Which stages of the MLOps lifecycle
do these tools cover in the use cases
reported in the academic literature?

MLOps pipelines encompass a range of stages, including data in-
gestion, pre-processing, model development, training, validation,
deployment, and ongoing monitoring. A heatmap (Figure 3) was
created to visualise what component(s) each extracted MLOps tool
fulfils, along with the frequency of each tool’s implementation
across the reviewed studies. Analysing the stages supported by
each tool revealed common areas of focus among MLOps solu-
tions. Overall, very few tools cover the entire pipeline, as most
specialise in one or more phases. Since MLOps tools can address
several components, authors may discuss only a subset. As a result,
the figure may omit certain stages a tool could cover, making our
assessment of functionality incomplete. Throughout this paper we
use the terms “stage”, “phase”, and “component” interchangeably
to refer to one functional step in that lifecycle.

Furthermore, Figure 4 presents a bar graph of MLOps tool counts
grouped by broad categories. These categories are adapted from

5



669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

Figure 3: Heatmap illustrating MLOps tools mapped across different MLOps pipeline phases, showing which phase(s) each tool
supports. Colour intensity represents the number of times each tool was implemented.

the taxonomy proposed by Najafabadi et al., who originally defined
six groups to classify MLOps components. To better reflect our
corpus, we both added two new groups—End-to-End and Managed
End-to-End—and removed unused groups such as Data Curation.
The full set of categories is:

• End-to-End
• Managed End-to-End
• Storage and Versioning
• Infrastructure and Supporting Services
• Inference
• ML Training

This categorization is primarily intended to facilitate the or-
ganization and presentation of our findings in this paper. While
individual tools may fall under multiple MLOps components, we as-
sign each tool to a single category to provide a clear and high-level
overview of the MLOps landscape.

4.3 RQ3: What are the reported benefits and
limitations of the MLOps tools?

The following Tables 3–10 present a synthesis of the reported ben-
efits and limitations of each MLOps tool identified in our review,
thereby addressing Research Question 3.

6



807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights Literature Review, May 2025, Vrije Universiteit Amsterdam

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

Figure 4: MLOps tool count grouped by category

These tables are grouped according to the categories defined in
Section 4.2 (End-to-End, Managed End-to-End, Storage and Version-
ing, Infrastructure and Supporting Services, Inference, ML Train-
ing), which allows for straightforward comparison of the practical
considerations involved in tool selection and implementation. Each
table organises tools by one of these categories.

These summaries are drawn from direct quotations in the source
literature, capturing the most common insights authors reported
from academic projects or industrial deployments. The complete
set of quotations, tools, and source papers is available in the accom-
panying supplementary sheets.

The tables are followed by Section 5, where we delve deeper into
the implications of these findings.

4.3.1 Infrastructure and Supporting Services

Apache Airflow is an open-source platform for orchestrating
production workflows and data pipelines [50].

ArgoWorkflow ArgoWorkflow is a container-native workflow
engine for orchestrating parallel jobs on Kubernetes [30]. By com-
bining Argo Events for webhook-triggered workflows and Argo
Workflow for execution, developers can automate the full ML lifecy-
cle in a reproducible, scalable, and hands-off manner. This includes
training, evaluation, and deployment. While production environ-
ments can benefit from such pipelines for mature, production-ready
teams, it is not recommended to incorporate such an environment
in the early stages of ML services or businesses [30].

Kubeflow Pipelines handles managing and orchestrating con-
tainerised workloads [15] while taking care of model training, de-
ployment, and coordination [24]. Since it runs on top of Kubernetes,
it lets users codify preprocessing, training, and deployment steps in
a single UI and execute many pipelines in parallel. Because every
component ships as a Kubernetes resource, the same pipeline runs
on-prem or in any managed Kubernetes service. It also has auto-
scaling pods, notebook sessions provided by Jupyter, experiment
tracking, hyperparameter tuning, and pluggable serving (Kube-
flow’s own KServe or other solutions such as Seldon Core), which
all sit behind the central dashboard.

Prefect Core is a pipeline orchestrator with a modern Python
API that keeps code readable and flexible when workflows are
highly dynamic [11].

ZenML links the orchestration layer with an artefact store so
that a stack can swap orchestration, or any other component, with-
out rewriting user code [5].

CML enables CI/CD for ML projects. It wires continuous inte-
gration to ML experiments, tracking changes and auto-generating
metric reports [35].

Gradio enables fast creation of interactive web interfaces for
model demos and evaluation without touching HTML, CSS, or
JavaScript [15].

TensorBoard is TensorFlow’s official visualisation toolkit, offer-
ing interactive exploration of computation graphs, layer structures,
and distributions of weights and biases through histograms. Ten-
sorBoard also provides real-time plotting of training metrics such
as loss and accuracy over time [47].

4.3.2 Managed End-to-End

AzureML is a managed end-to-end service; users still provision
the workspace, storage, networking, and container registry either
interactively or through infrastructure-as-code [29].

AWS SageMaker is Amazon’s cloud platform for building, train-
ing, tuning, and deploying models in a hosted production environ-
ment [34].

ClearML provides semi-automated experimental run tracking
and auditing, capturing comprehensive metadata, parameters, and
metrics across popular Data Science tools. It relies on a dedicated
central web server underpinned by a MongoDB database, an Elastic-
search deployment, and cloud object storage for artefact archiving,
enabling end-to-end traceability and auditability of experiments
[40].

4.3.3 End-to-End

MLflow is an end-to-end tool made of multiple modules [9]
which was initially started as an open-source platform to provide
comprehensive experiment tracking capabilities [25][31][5][44].
It has grown to cover most of the MLOps pipeline through the
inclusion of the following components. The MLFlow Tracking com-
ponent records parameters, metrics, and artefacts for every run
[40], ensuring a complete workflow history.MLFlow Projects encap-
sulate data science code and dependencies, enabling reproducible
execution across diverse environments. MLflow pipeline involves
processing, cleaning, transforming, training models, and evaluating
them, ensuring large-scale ML model deployment. MLFlow Models
then offers a standardised structure for packaging machine learning
models and facilitates seamless deployment in various serving in-
frastructures [9]. Finally,MLFlow Registry serves as a unified model
store, providing versioning, annotation, stage transitions, and the
promotion of specific model versions to “Production” for batch
or real-time inference [31][39]. Autologging further streamlines
experiments by automatically capturing parameters and metrics
from supported ML libraries [5].

7



945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

Neptune.ai positions itself as a complete platform that spans
data versioning, testing, deployment, and monitoring [43].

Pachyderm offers GUI-based notebook services, experiment
tracking, and hyperparameter tuning [23].

Polyaxon is an open-source, Kubernetes-native end-to-endMLOps
platform focused on experiment tracking, visualisation, parallel
executions and hyperparameter optimisation. Its main focus is
parallelisable experiment tracking, where it attempts to provide
computationally efficient mechanisms for running and interpreting
parallel ML experiments at scale. While Polyaxon’s core and exper-
imentation tools are open source, its automation and management
features are not [23].

TensorFlowExtended (TFX) offers a production-grade pipeline
implementation for TensorFlow models [20].

Google Vertex AI is part of GCP, merging AutoML and AI Plat-
form behind one API, client library, and UI [41][29]. TheWorkbench
offers Jupyter notebooks [8] and AutoML streamlines training, ex-
periment tracking, and metadata management. A Model Registry
manages versions for online or batch prediction, while the Pipeline
view visualises step dependencies, integrated logging, and moni-
toring track performance over time.

4.3.4 ML Training

Katib is part of Kubeflow. It automates hyperparameter tuning
across frameworks including TensorFlow, MXNet, PyTorch, and
XGBoost [17].

4.3.5 Storage and Versioning

Weights & Biases is cited as an ML metadata repository, yet
the sources offer no elaboration [5].

Dagshub hosts data repositories and models for collaborative
versioning. Some authors store all pipeline outputs remotely in it
[31][2].

DVC extends Git to manage large datasets and model files, en-
abling version control of large data alongside code [31] [4] [25]
[9] [36] [7][20][15]. Consequently, its Git-like workflow simplifies
adoption for users familiar with Git [4]. DVC’s pipeline feature
modularizes data processing into stages with explicit input-output
dependencies and parameterisation, ensuring reproducibility, au-
tomation, and reusability across projects [4]. It also supports ex-
periment tracking and storing metadata within Git, while actual
data resides in DVC storage, with metadata files orchestrating data
retrieval [35].

Feast provides both offline and online feature storage, keeping
historical as well as live data in sync [44]. One paper mislabels it
as a performance monitoring tool [47].

GTO is Iterative’s GitOps-based model registry. It eliminates
the need for separate servers or databases by leveraging Git and
DVC repositories and provides streamlined support for promoting
models through designated repository branches and stages [35].

MinIO is an S3-compatible object store that keeps artefacts and
metadata from ZenML and MLflow but can host any data [5].

4.3.6 Inference

Metaflow is a framework for creating and executing data sci-
ence workflows in local environments and scaling them to the cloud
with ease [40].

KServe originates from the Kubeflow ecosystem and wraps
models as web services on Knative/Istio. This results in autoscaling,
isolation, and an event-driven path to downstream monitoring
[24][20][17].

BentoML is a model serving tool that bundles a trained model
and its dependencies into a production-ready service [40][39].

Seldon Core is a model deployment tool that exposes models
as web services [11] with robust support for Kubernetes [24].

Evidently is an open-source model monitoring library that gen-
erates predefined monitoring reports with a few lines of code. It can
automatically detect drift in input data, target values, and predic-
tions, and supports multi-model dashboards by calculating metrics
across multiple models with a single monitor [2][44][24].

Streamlit provides a quick route to deploy ML applications
through a simple Python interface [2].

5 Discussion
The following subsections are organised around our three research
questions and draw directly on the synthesis captured in Tables
1–8. Each benefit extracted from the studies is labelled B1, B2, . . .
and each limitation as L1, L2 and so on. Thus, a reference such
as B31 sends you to the 31st benefit row, while L17 points to the
17th limitation. To examine the supporting evidence, consult the
corresponding rows in Tables 1–8, where the summarised finding
and the primary paper that reported it are.

5.1 RQ1 – Which tools employed in MLOps
workflows are most frequently reported in
academic literature?

Across the primary studies, four tools stand out: MLflow, DVC,
Kubeflow Pipelines, and AWS SageMaker as shown in Figure 2.
The first three are fully open-source, while AWS SageMaker is a
proprietary cloud service. This divide reflects a familiar compromise
in MLOps practice: practitioners prefer community-maintained
tools for tasks like experiment tracking and data versioning but
often turn to commercial platforms when they need infrastructure
that scales quickly and comes with operational support.

Both MLflow and Kubeflow are classified as end-to-end plat-
forms, providing experiment tracking, model packaging, and de-
ployment in one bundle. However, their design philosophies diverge
significantly. MLflow focuses on accessibility: it is easy to use, has
a straightforward web UI, thorough and substantial documentation,
wide storage-backend support, and a lively community (B24–B30).
Kubeflow takes a different approach. It is rooted in Kubernetes and
focuses more on customisability with fine-grained control, modular
components, and automatic scaling (B3–B8). However, it demands
a tougher setup and steeper operational know-how (L3–L5). The
fact that both tools top the frequency chart suggests that while

8



1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights Literature Review, May 2025, Vrije Universiteit Amsterdam

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

some users prefer easy-to-use tools and others value customisable
options, there is room for both approaches to succeed.

DVC is a notable outlier among the most cited tools, as it tackles
only a single stage of the MLOps life cycle, data storage and ver-
sioning, and yet it appears almost as often as the full end-to-end
platforms. Synchronising large data artefacts with code has been
a historic pain point in ML. Authors repeatedly select DVC for its
easy-to-use Git-like interface (B45) as well as pipeline caching and
serverless architecture. A recurring pairing was the adoption of Git
for code with DVC for large data because of Git’s size limits. Git LFS
was meant to alleviate this struggle, but unlike Git LFS, DVC needs
no extra server, a difference reviewers flag as decisive. L29–L30)
confirm that none of the other surveyed tools offer a comparable
alternative.

Another reason for MLflow’s popularity is that, even though it is
open-source, it remains a mature, well-established platform trusted
by leading companies and backed by both a strong community and
Databricks (B26). Its popularity feeds a loop:more users attractmore
contributors, the codebase improves, and the project becomes even
more appealing, which leads the community to further grow. The
same holds true for Kubeflow (B4). Some projects, however, are less
attractive because of their "uncertain vitality", meaning that their
long-term health is harder to predict; Polyaxon, for instance, relies
on a comparatively small contributor base (L27). Lower adoption
means fewer contributors, slow progress, and even less visibility;
a feedback loop in reverse that keeps new users away. In practice,
the presence of an active maintainer community weighs heavily
when choosing a tool for the long haul (B26, B4). MLflow does
not just entice developers who want a self-hosted solution, since
developers who prefer to skip infrastructure work can opt for a
managed MLflow provided by Databricks, which sidesteps the need
to run and maintain a separate tool (L16).

The widespread use of AWS SageMaker highlights the ongoing
significance of managed services (Figure 2). Managed MLOps plat-
forms such as SageMaker remain popular because they include a
wide array of pre-integrated pipeline components, such as a fea-
ture store, model registry, and CI/CD templates (B17). Companies
accept the subscription fee and the inherent risks of vendor lock-in
because the alternatives present significant challenges and costs
(L10, L12, L9, L15). A managed service hides the heavy work of
provisioning and securing compute, storage, and networking, and it
scales on demand (B18, B15, B16, B23). The same attraction applies
to the managed stacks from Azure ML (B14) and Google Cloud
Vertex AI (B22). Organisations that are unwilling to rely on a third-
party cloud provider often choose to build an in-house pipeline
from open-source projects such as MLflow for experiment tracking,
Kubeflow for orchestration, and DVC for data versioning. How-
ever, this option demands far more integration effort and long-term
maintenance and may be better suited to larger teams and more
mature projects (L3, L29, L19, L16).

5.2 RQ2 – Which stages of the MLOps lifecycle
do these tools cover in the reported use
cases?

Mapping each tool to the taxonomy defined in Section 2 reveals
that no single solution addresses the entire ML lifecycle.. However,

this is more due to what the papers mention than what the product
definitively offers. Kubeflow excels at orchestration (B4), MLflow
at experiment tracking (B28), while DVC and Feast handle data and
feature management, respectively (B45, B57).

AWS SageMaker bundles a model registry, feature store, and
deployment tools, yet teams still turn to third-party services for
granular security and local runs (L10–L12). The component that
offers the least coverage is in feature stores and runtimemonitoring;
outside of Feast and Evidently, non-managed options are almost
nonexistent (Tables 6 and 7). Consequently, multi-tool pipelines are
the norm, underpinning the importance of effective tool integration.

While classifying tools, we found one component that did not fit
cleanly into Najafabadi et al.’s [32] component architecture: visu-
alisation dashboards such as TensorBoard, Weights & Biases, and
Gradio. The closest existing component was Runtime Monitoring,
which does not really capture their purpose, so we introduced a
dedicated visualisation component instead.

Across all reviewed papers, theMLMetadata Repository (Experiment-
tracking) stage is addressed the most. This dominance is caused
by the ubiquity of MLflow, making it a default choice for an exper-
iment tracking tool that is open source. Managed solutions such
as SageMaker and Azure ML (B17, B16) further contribute to its
widespread adoption. Reliable metadata is essential for reproducibil-
ity, auditability, and model evaluation; consequently, practitioners
consistently prioritise this component.

Yet orchestration tools sit a close second: they are the "glue" that
binds data prep, training, and deployment into a runnable pipeline,
so virtually every study that examines end-to-end workflows also
highlights orchestrators such as Kubeflow, Argo, or similar sched-
ulers.

5.3 RQ3 – What are the claimed benefits and
limitations of the MLOps tool?

5.3.1 Security andManaged Platform Trade-offs MLflow lacks auto-
matic data versioning (L17), which explains why many studies pair
it with DVC (B45–B49). It is also missing role-based access control
(L19). In contrast, AWS SageMaker covers that gap through IAM in-
tegration (B19). A well-established trade-off emerges: open-source
tools need extra engineering to meet enterprise-grade security,
while cloud platforms shift that work to the provider at the cost
of vendor lock-in. Even then, the cloud does not guarantee full
coverage. For example, Google’s Vertex AI still trails Azure ML and
SageMaker on security, user control, and governance despite tying
you to Google’s stack.

5.3.2 Post-deployment Monitoring Evidently is the only tool that
comes with a drift detection feature out of the box (B67–B71), and
it works only for tabular data (L37). The limited findings indicate
that post-deployment observability is still an emerging component
of the ecosystem.

5.3.3 Prerequisite Knowledge A common limitation noted among
tools is the required prerequisite knowledge. Pachyderm requires
Helm and cloud-storage expertise (L23), while both Kubeflow and
Argo Workflows demand solid Kubernetes and containerisation
experience (L3, L7–L8). Several other services, including Feast’s SDK
(L34), Weights & Biases’ client code (L33), Neptune’s Python API

9



1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

(L22) and SageMaker’s SDK (L11), call for advanced programming
skills. These findings show that tool comparison should not focus
solely on a tool’s features and limitations, but it must also consider
the skills a team possesses.

5.3.4 Integration and Flexibility Easy integration and language
agnosticism are among the most frequently praised benefits. Or-
chestrators such as Kubeflow Pipelines are applauded for both their
cloud-agnostic Kubernetes foundation and their seamless hooks
into TensorFlow Extended (B3, B6), while managed stacks win
favour largely because of the way they slot into their parent ecosys-
tems—AWS SageMaker’s tight coupling with IAM and the rest of the
AWS suite being a prime example (B19). At the experiment-tracking
layer, MLflow extends this integrative spirit through container-
friendly, self-hosted deployments and pluggable back-end stores
that work just as well with S3, Azure Blob, on-prem NFS, or SQL-
compatible databases (B25, B30). Flexibility in storage backends is
also demonstrated by DVC’s remote options (B49) and MLflow’s
broad object-store support (B30). TFX is widely appreciated for its
portability, with pipelines that can run seamlessly across multiple
orchestrators rather than being locked to a single workflow engine
(B41). Finally, inference services such as BentoML embrace frame-
work diversity by supporting TensorFlow, PyTorch, Keras, XGBoost,
and more out of the box (B61). Taken together, these examples show
that the community consistently rewards tools that can drop into
existing tech stacks without forcing a wholesale rewrite in a particu-
lar language, framework, or cloud. In contrast, the lack of flexibility
is listed as a drawback by reviewers, specifically in TensorBoard
and TFX which tie users to the TensorFlow stack (L39, L28).

5.3.5 User Interfaces and Visualization Finally, visual dashboards
and UIs are widely appreciated. Kubeflow’s central UI (B7), Vertex
AI’s pipeline view (B22), MLflow’s experiment board (B24) and
Pachyderm’s web console (B35) are all reported as benefits, as they
improve ease of use.

6 Conclusion
This review set out to identify which MLOps-native tools appear
most frequently in academic work and to understand the reasons
for their uptake. A structured Google Scholar search, followed by
manual screening, filtered 96 papers to 41 selected studies which
were extracted and synthesised in a systematic, structured manner.

Our review confirms a clear pattern in recent MLOps practice.
MLflow, DVC, Kubeflow Pipelines, and AWS SageMaker appear
most frequently in MLOps pipelines because each addresses a
critical pain point: MLflow simplifies experiment tracking, DVC
brings Git-style version control to data, Kubeflow coordinates cloud-
agnostic workflows, and SageMaker lifts the infrastructure burden
through a fully managed service. Their popularity is sustained ei-
ther by lively open-source communities or by the deep resources
of a major cloud provider.

Yet none of these platforms covers the entire lifecycle on its own.
Researchers commonly assemble a mixed tool pipeline. Future work
should move beyond cataloguing tools to evaluating tool interoper-
ability and integration effort. This includes analyzing each tool’s
dependencies on external platforms and how easily it can be com-
bined with others to build coherent workflows. A useful extension

would be a comparative table showing dependency relationships
and open-source status, offering a clearer picture of ecosystem
maturity and possible vendor lock-in. Benchmarking integration
effort, metadata consistency, and runtime stability would offer the
objective metrics needed to help practitioners choose interoperable
end-to-end solutions.

References
[1] [n. d.]. The Winding Road to Better Machine Learning Infrastruc-

ture Through Tensorflow Extended and Kubeflow | Spotify Engineer-
ing. https://engineering.atspotify.com/2019/12/the-winding-road-to-better-
machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow

[2] William Inouye Almeida. 2023. Building an Automated MLOps Pipeline
and Recommending an Open-Source Stack to Deploy a Machine Learning
Application. Master’s thesis. Universidade do Porto (Portugal). https:
//search.proquest.com/openview/3caae32a5b14a5346907376fce17b338/1?pq-
origsite=gscholar&cbl=2026366&diss=y

[3] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and
Alexander Chatzigeorgiou. 2019. Identifying, categorizing and mitigating threats
to validity in software engineering secondary studies. Information and Software
Technology 106 (2019), 201–230. https://doi.org/10.1016/j.infsof.2018.10.006

[4] Vidushi Arora. 2024. Exploring real-world challenges in MLOps implementation:
a case study approach to design effective data pipelines. (2024). https://elib.uni-
stuttgart.de/items/e6f46863-465d-4e88-861c-9dcbabc746db

[5] Michal Bacigál. 2024. Design and Implementation of Machine Learning Opera-
tions. (Feb. 2024). https://dspace.cvut.cz/handle/10467/113781 Accepted: 2024-
02-09T23:53:17Z Publisher: České vysoké učení technické v Praze. Vypočetní a
informační centrum..

[6] Rahul Bagai, Ankit Masrani, Piyush Ranjan, Madhavi Najana, and Ankit Mas-
rani. 2024. Implementing Continuous Integration and Deployment (CI/CD) for
Machine Learning Models on AWS. International Journal of Global Innovations
and Solutions (IJGIS) (May 2024). https://doi.org/10.21428/e90189c8.9cb39c55
Publisher: The New World Foundation.

[7] N. Bauman. 2022. Building a generalisable ML pipeline at ING. (2022). https:
//repository.tudelft.nl/record/uuid:35c850eb-1d03-4185-a8c5-4469b2112327

[8] Ralph Bergmann, Felix Theusch, Paul Heisterkamp, and Narek Grigoryan. 2024.
Comparative Analysis of Open-Source ML Pipeline Orchestration Platforms.
(2024). https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/
382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_
Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-
Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf

[9] Anas Bodor, Meriem Hnida, and Daoudi Najima. 2023. From Development to
Deployment: An Approach to MLOps Monitoring for Machine Learning Model
Operationalization. In 2023 14th International Conference on Intelligent Systems:
Theories and Applications (SITA). 1–7. https://doi.org/10.1109/SITA60746.2023.
10373733

[10] Anas Bodor, Meriem Hnida, and Daoudi Najima. 2023. MLOps: Overview of
Current State and Future Directions. In Innovations in Smart Cities Applications
Volume 6. Springer, Cham, 156–165. https://doi.org/10.1007/978-3-031-26852-
6_14 ISSN: 2367-3389.

[11] Antonio M. Burgueño-Romero, Cristóbal Barba-González, and José F. Aldana-
Montes. 2025. Big Data-driven MLOps workflow for annual high-resolution land
cover classification models. Future Generation Computer Systems 163 (Feb. 2025),
107499. https://doi.org/10.1016/j.future.2024.107499

[12] Ji-hyun Cha, Heung-gyun Jeong, Seung-woo Han, Dong-chul Kim, Jung-hun
Oh, Seok-hee Hwang, and Byeong-ju Park. 2023. Development of MLOps Plat-
form Based on Power Source Analysis for Considering Manufacturing Environ-
ment Changes in Real-Time Processes. In Human-Computer Interaction. Springer,
Cham, 224–236. https://doi.org/10.1007/978-3-031-35572-1_15 ISSN: 1611-3349.

[13] Swati Choudhary. 2021. Kubernetes-Based Architecture For An On-premises
Machine Learning Platform. (2021).

[14] Thomas Davenport and Katie Malone. 2021. Deployment as a Critical Busi-
ness Data Science Discipline. Harvard Data Science Review 3, 1 (feb 10 2021).
https://hdsr.mitpress.mit.edu/pub/2fu65ujf.

[15] Daniel Deutsch. 2023. Machine learning operations – domain analysis, reference
architecture, and example implementation / Author Daniel Deutsch, LL.B. (WU).
LL.M. (WU). http://epub.jku.at/obvulihs/8593075

[16] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. 2016.
DevOps. IEEE Software 33, 3 (2016), 94–100. https://doi.org/10.1109/MS.2016.68

[17] Kanwarpartap Singh Gill, Vatsala Anand, Rahul Chauhan, Ruchira Rawat, and
Pao-Ann Hsiung. 2023. Utilization of Kubeflow for Deploying Machine Learning
Models Across Several Cloud Providers. In 2023 3rd International Conference on
Smart Generation Computing, Communication and Networking (SMART GENCON).
1–7. https://doi.org/10.1109/SMARTGENCON60755.2023.10442069

10

https://engineering.atspotify.com/2019/12/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow
https://engineering.atspotify.com/2019/12/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow
https://search.proquest.com/openview/3caae32a5b14a5346907376fce17b338/1?pq-origsite=gscholar&cbl=2026366&diss=y
https://search.proquest.com/openview/3caae32a5b14a5346907376fce17b338/1?pq-origsite=gscholar&cbl=2026366&diss=y
https://search.proquest.com/openview/3caae32a5b14a5346907376fce17b338/1?pq-origsite=gscholar&cbl=2026366&diss=y
https://doi.org/10.1016/j.infsof.2018.10.006
https://elib.uni-stuttgart.de/items/e6f46863-465d-4e88-861c-9dcbabc746db
https://elib.uni-stuttgart.de/items/e6f46863-465d-4e88-861c-9dcbabc746db
https://dspace.cvut.cz/handle/10467/113781
https://doi.org/10.21428/e90189c8.9cb39c55
https://repository.tudelft.nl/record/uuid:35c850eb-1d03-4185-a8c5-4469b2112327
https://repository.tudelft.nl/record/uuid:35c850eb-1d03-4185-a8c5-4469b2112327
https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf
https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf
https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf
https://www.researchgate.net/profile/Narek-Grigoryan-3/publication/382114154_Comparative_Analysis_of_Open-Source_ML_Pipeline_Orchestration_Platforms/links/668e31d6b15ba559074d9a4b/Comparative-Analysis-of-Open-Source-ML-Pipeline-Orchestration-Platforms.pdf
https://doi.org/10.1109/SITA60746.2023.10373733
https://doi.org/10.1109/SITA60746.2023.10373733
https://doi.org/10.1007/978-3-031-26852-6_14
https://doi.org/10.1007/978-3-031-26852-6_14
https://doi.org/10.1016/j.future.2024.107499
https://doi.org/10.1007/978-3-031-35572-1_15
http://epub.jku.at/obvulihs/8593075
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/SMARTGENCON60755.2023.10442069


1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights Literature Review, May 2025, Vrije Universiteit Amsterdam

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

[18] Google Cloud Tech. 2020. Introduction to Kubeflow. https://www.youtube.com/
watch?v=cTZArDgbIWw

[19] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.
2018.00059 ISSN: 2378-203X.

[20] Hannes Jämtner and Stefan Brynielsson. 2022. An Empirical Study on AI Work-
flow Automation for Positioning. (2022).

[21] Barbara Ann Kitchenham and Stuart Charters. 2007. Guidelines for Per-
forming Systematic Literature Reviews in Software Engineering. Technical Re-
port EBSE 2007-001. Keele University and Durham University Joint Report,
Keele, UK and Durham, UK. https://www.elsevier.com/__data/promis_misc/
525444systematicreviewsguide.pdf

[22] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. 2022. Machine Learn-
ing Operations (MLOps): Overview, Definition, and Architecture. https:
//doi.org/10.48550/arXiv.2205.02302 arXiv:2205.02302 [cs].

[23] Anders Köhler. 2022. Evaluation of MLOps Tools for Kubernetes : A Rudimentary
Comparison Between Open Source Kubeflow, Pachyderm and Polyaxon. https:
//urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-488601

[24] Yumo Luo. 2023. An Open-Source and Portable MLOps Pipeline for Continuous
Training and Continuous Deployment. (2023).

[25] Giulio Mallardi, Fabio Calefato, Luigi Quaranta, and Filippo Lanubile.
2024. An MLOps Approach for Deploying Machine Learning Models in
Healthcare Systems. In 2024 IEEE International Conference on Bioinfor-
matics and Biomedicine (BIBM). IEEE, 6832–6837. https://ieeexplore.ieee.
org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:
EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-
0s4zW9omjkMLOt65AuexQrDa3TwVGsQ

[26] Andres Felipe Varon Maya. [n. d.]. The State of MLOps. ([n. d.]).
[27] Rick Merritt. 2020. What is MLOps? https://blogs.nvidia.com/blog/what-is-

mlops/
[28] Zakkarija Micallef. 2025. A Systematic Review of MLOps Tools: Practices, Chal-

lenges, and Lessons Learned. https://doi.org/10.5281/zenodo.15459745
[29] Widad El Moutaouakal and Karim Baïna. 2023. Comparative Experimentation of

MLOps Power on Microsoft Azure, Amazon Web Services, and Google Cloud
Platform. In 2023 IEEE 6th International Conference on Cloud Computing and
Artificial Intelligence: Technologies and Applications (CloudTech). 1–8. https:
//doi.org/10.1109/CloudTech58737.2023.10366138

[30] Sasu Mäkinen. 2021. Designing an open-source cloud-native MLOps pipeline.
University of Helsinki (2021). https://helda.helsinki.fi/server/api/core/bitstreams/
d01f98ef-becf-4329-997d-3ebe70092590/content

[31] Óscar A. Méndez, Jorge Camargo, and Hector Florez. 2025. Machine Learning
Operations Applied to Development and Model Provisioning. In Applied Infor-
matics, Hector Florez and Hernán Astudillo (Eds.). Vol. 2236. Springer Nature
Switzerland, Cham, 73–88. https://doi.org/10.1007/978-3-031-75144-8_6 Series
Title: Communications in Computer and Information Science.

[32] Faezeh Amou Najafabadi, Justus Bogner, Ilias Gerostathopoulos, and Patricia
Lago. 2024. An Analysis of MLOps Architectures: A Systematic Mapping Study.
Vol. 14889. 69–85. https://doi.org/10.1007/978-3-031-70797-1_5 arXiv:2406.19847
[cs].

[33] Moses Openja, Forough Majidi, Foutse Khomh, Bhagya Chembakottu, and Heng
Li. 2022. Studying the Practices of Deploying Machine Learning Projects on
Docker. In Proceedings of the 26th International Conference on Evaluation and
Assessment in Software Engineering (EASE ’22). Association for Computing Ma-
chinery, New York, NY, USA, 190–200. https://doi.org/10.1145/3530019.3530039

[34] Alessandro Palladini. 2022. Streamline machine learning projects to production
using cutting-edge MLOps best practices on AWS. laurea. Politecnico di Torino.
https://webthesis.biblio.polito.it/22607/

[35] Productdock d.o.o, Nataša Radaković, Ivana Šenk, University of Novi Sad, Faculty
of Technical Sciences, Nina Romanić, and Productdock d.o.o. 2023. A MACHINE
LEARNING PIPELINE IMPLEMENTATION USING MLOPS AND GITOPS PRIN-
CIPLES. In 19th International Scientific Conference on Industrial Systems. Faculty
of Technical Sciences, 94–99. https://doi.org/10.24867/IS-2023-T2.1-6_08141

[36] Katja-Mari Ratilainen. 2023. Adopting Machine Learning Pipeline in Existing
Environment. (2023).

[37] Gilberto Recupito, Fabiano Pecorelli, Gemma Catolino, Sergio Moreschini,
Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri. 2022. A Multivo-
cal Literature Review of MLOps Tools and Features. In 2022 48th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). 84–91.
https://doi.org/10.1109/SEAA56994.2022.00021

[38] Philipp Ruf, Manav Madan, Christoph Reich, and Djaffar Ould-Abdeslam. 2021.
Demystifying MLOps and Presenting a Recipe for the Selection of Open-Source
Tools. Applied Sciences 11, 19 (Jan. 2021), 8861. https://doi.org/10.3390/

app11198861 Number: 19 Publisher: Multidisciplinary Digital Publishing In-
stitute.

[39] Enrico Salvucci. 2021. MLOps-Standardizing the Machine Learning Workflow.
(2021). https://amslaurea.unibo.it/id/eprint/23645/

[40] Luca Scotton. 2021. Engineering framework for scalable machine learning
operations. (2021). https://aaltodoc.aalto.fi/items/a1497a44-1c3a-46bf-b76a-
c7cba635462c

[41] Ladson Gomes Silva. 2022. A Review on How Machine Learning Operations
(MLOps) are Changing the Landscape of Machine Learning Development for
Production. (2022).

[42] Afonso Rafael Carvalho Sousa. 2022. Orchestrator selection process for cloud-
native machine learning experimentation. (2022).

[43] Matteo Testi. 2024. Machine Learning Operations (MLOps) in Healthcare. (2024).
https://www.iris.unicampus.it/handle/20.500.12610/83683 Publisher: Università
Campus Bio-Medico.

[44] T Vishwambari and Sonali Agrawal. 2023. Integration of Open-Source Machine
Learning Operations Tools into a Single Framework. In 2023 International Con-
ference on Computing, Communication, and Intelligent Systems (ICCCIS). 335–340.
https://doi.org/10.1109/ICCCIS60361.2023.10425558

[45] Samar Wazir, Gautam Siddharth Kashyap, and Parag Saxena. 2023. MLOps: A
Review. https://doi.org/10.48550/arXiv.2308.10908 arXiv:2308.10908 [cs].

[46] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering. ACM, London
England United Kingdom, 1–10. https://doi.org/10.1145/2601248.2601268

[47] Ting Chun Yau. 2023. Investigate the challenges and opportunities of MLOps.
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-324011

[48] Mohammad Zarour, Hamza Alzabut, and Khalid T. Al-Sarayreh. 2025. MLOps
best practices, challenges and maturity models: A systematic literature review.
Information and Software Technology 183 (July 2025), 107733. https://doi.org/10.
1016/j.infsof.2025.107733

[49] Yue Zhou, Yue Yu, and Bo Ding. 2020. Towards mlops: A case study of ml
pipeline platform. In 2020 International conference on artificial intelligence
and computer engineering (ICAICE). IEEE, 494–500. https://ieeexplore.
ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:
dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-
ilzXVPW6M8

[50] Iago Águila Cifuentes. 2023. Design and Development of an MLOps Framework.
Master’s thesis. Universitat Politècnica de Catalunya. https://upcommons.upc.
edu/handle/2117/395348 Accepted: 2023-10-25T10:32:47Z.

11

https://www.youtube.com/watch?v=cTZArDgbIWw
https://www.youtube.com/watch?v=cTZArDgbIWw
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://doi.org/10.48550/arXiv.2205.02302
https://doi.org/10.48550/arXiv.2205.02302
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-488601
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-488601
https://ieeexplore.ieee.org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-0s4zW9omjkMLOt65AuexQrDa3TwVGsQ
https://ieeexplore.ieee.org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-0s4zW9omjkMLOt65AuexQrDa3TwVGsQ
https://ieeexplore.ieee.org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-0s4zW9omjkMLOt65AuexQrDa3TwVGsQ
https://ieeexplore.ieee.org/abstract/document/10822603/?casa_token=5GBnjhwp4KAAAAAA:EOEBUeWoY9ZBRsrZ5ij8AoSypmOyGTqTPEraM4kOitmHiRI-0s4zW9omjkMLOt65AuexQrDa3TwVGsQ
https://blogs.nvidia.com/blog/what-is-mlops/
https://blogs.nvidia.com/blog/what-is-mlops/
https://doi.org/10.5281/zenodo.15459745
https://doi.org/10.1109/CloudTech58737.2023.10366138
https://doi.org/10.1109/CloudTech58737.2023.10366138
https://helda.helsinki.fi/server/api/core/bitstreams/d01f98ef-becf-4329-997d-3ebe70092590/content
https://helda.helsinki.fi/server/api/core/bitstreams/d01f98ef-becf-4329-997d-3ebe70092590/content
https://doi.org/10.1007/978-3-031-75144-8_6
https://doi.org/10.1007/978-3-031-70797-1_5
https://doi.org/10.1145/3530019.3530039
https://webthesis.biblio.polito.it/22607/
https://doi.org/10.24867/IS-2023-T2.1-6_08141
https://doi.org/10.1109/SEAA56994.2022.00021
https://doi.org/10.3390/app11198861
https://doi.org/10.3390/app11198861
https://amslaurea.unibo.it/id/eprint/23645/
https://aaltodoc.aalto.fi/items/a1497a44-1c3a-46bf-b76a-c7cba635462c
https://aaltodoc.aalto.fi/items/a1497a44-1c3a-46bf-b76a-c7cba635462c
https://www.iris.unicampus.it/handle/20.500.12610/83683
https://doi.org/10.1109/ICCCIS60361.2023.10425558
https://doi.org/10.48550/arXiv.2308.10908
https://doi.org/10.1145/2601248.2601268
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-324011
https://doi.org/10.1016/j.infsof.2025.107733
https://doi.org/10.1016/j.infsof.2025.107733
https://ieeexplore.ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-ilzXVPW6M8
https://ieeexplore.ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-ilzXVPW6M8
https://ieeexplore.ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-ilzXVPW6M8
https://ieeexplore.ieee.org/abstract/document/9361315/?casa_token=gVu7NAHT9ekAAAAA:dRRrkR3bXuCbJBAJNB3M95gMr9rn64LekVjhlXhl2E8M5hgbYSzM5HaF7ysjw0VLIO3K-ilzXVPW6M8
https://upcommons.upc.edu/handle/2117/395348
https://upcommons.upc.edu/handle/2117/395348


1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

Table 3: Summary of MLOps Tools: Infrastructure and Supporting Service (Orchestrators)

Tool Benefits Limitations

Apache Airflow
B1 Open source software licensed under Apache

License 2.0 [50]
B2 Provides an intuitive web interface for visual-

ising and monitoring workflows [50]

L1 Installation and configuration can be complex
in real-world environments [50]

L2 The recommended installation method is com-
plicated in real-world situations [50]

Kubeflow Pipelines
B3 Cloud-agnostic architecture enabling it to be

executed on any cloud provider that supports
Kubernetes [17] [24] [20] with distributions
dedicated for major cloud providers [23].

B4 More mature and widespread than its competi-
tors and more specialised for ML when com-
pared with Flyte, Apache Airflow, and so on
[20].

B5 Abstracts away the complexity of dynamically
scaling workloads up or down via the Kuber-
netes engine. scale [13].

B6 Full end-to-end MLOps solution (Kubeflow
Notebooks, Kubeflow Pipelines, Katib) that is
highly customisable, through either KServe or
Seldon Core [23] and with seamless TFX inte-
gration [49].

B7 Offers an easily accessible and configurable
Kubeflow UI dashboard [23] [12].

B8 Strong security (multi-user isolation) [23].

L3 Difficult to set up with a non-trivial learning
curve. [23][42].

L4 "Everything in one package" and hence can
feel bloated compared with small, focused so-
lutions aimed at solving specific pain points
[42].

L5 Out-of-date documentation for many Kube-
flow features [23].

ZenML
B9 Simple local development (configured in three

simple commands) [5].
B10 Automatic deployment of a local MLflow track-

ing server [5].
B11 Easily expandable to support different orches-

tration components [5].

L6 Incomplete user management features [5].

Argo Workflow
B12 Workflow definitions enable straightforward

artefact storage and transfer between tasks.
B13 Supports fully automated, reproducible, and

scalable end-to-end model training, evaluation,
and deployment without manual intervention.

L7 Requires developers to manage containerisa-
tion complexity.

L8 Pipeline development and management de-
mand in-depth knowledge of Kubernetes and
associated tooling.

12



1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights Literature Review, May 2025, Vrije Universiteit Amsterdam

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

Table 4: Summary of MLOps Tools: Managed End-to-End Platforms

Tool Benefits Limitations

AzureML
B14 Simple data imports and code-free drag-and-

drop tools for data cleaning and transforma-
tion [29].

B15 Quick and easy to set up for testing, orchestra-
tion, and robust security (network protection,
RBAC) [29].

B16 Fully complete security features. Only Mi-
crosoft Azure ML provides the ability for users
to set up network and data protection policies
as well as built-in RBAC features [29].

L9 Commercial product requiring an Azure sub-
scription [29].

SageMaker
B17 Robust and intuitive, offering feature parity

with Azure ML [29]. Includes a good set of
tools with its own model registry, a feature
store and lineage tracking logic. Handles step
creations and management as well as auto-
mates model deployment with CI/CD [34].

B18 Facilitates easy scalable training and deploy-
ment that reduces operation overhead [6].

B19 Seamless integration within the AWS ecosys-
tem [34] such as the ability to integrate with
AWS Single Sign-On (SSO) to manage identi-
ties and access [29].

B20 Provides abstracted tools for model tuning
[34].

L10 Requires a commercial licence [47].
L11 Requires programming skills and has less com-

prehensive documentation [47].
L12 If an organisation does not already use AWS

IAMor SSO, additional adoption andmigration
work is required [29].

Google Vertex AI
B21 Offers AutoML, integrates Jupyter Notebook

in Vertex AI Workbench and provides its own
model registry and pipelines. Integrates moni-
toring and logging capabilities [41].

B22 Easy to use central UI dashboard with visu-
alised workflows where users can monitor the
progress, review the execution history, and un-
derstand the dependencies between different
components of the pipeline [8].

B23 Flexible scalability and easy to use Kubernetes
cluster with a choice of machine hardware [8].

L13 Dataset preparation tasks are considered the
most "painful", with large multi-step coding
tasks without a visual drag-and-drop interface
when compared to Azure and AWS Sagemaker
[29].

L14 Lacks robust security control measures (IAM
and workspace separation) [29].

L15 Operates on a commercial, pay-as-you-go
model.

13



1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910

Table 5: Summary of MLOps Tools: End-to-End Platforms

Tool Benefits Limitations

MLflow
B24 User-friendly with a UI providing visualisation

capabilities for easy data interpretation and analy-
sis, along with an intuitive web-based dashboard
[31][36][25].

B25 Completely open-source and self-hosting capabil-
ities while natively supporting container deploy-
ments [5][40].

B26 Strong vitality, since it is a well-established
tool used by many world-renowned companies,
backed by strong community support [5][11].

B27 Offers comprehensive and extensive documenta-
tion [11].

B28 Comprehensive Experiment Tracking with robust
logging and visualisation of metrics and artefacts,
which allows users to trace models to their train-
ing rounds via MLflow APIs/UI and to track al-
gorithms, hyperparameters, dataset versions, and
feature selections [31][4][49]. It is MLFow’s key
feature and module.

B29 Simplifies performance evaluation with enhanced
model performance monitoring. Moreover, it fea-
tures autologging and seamlessly integrates with
other monitoring tools for efficient model im-
provement [5][9][15][31].

B30 Flexible data storage options with support for pop-
ular cloud storage services (Amazon S3, Azure
Blob Storage, Google Cloud Storage) as well as
on-premise or hybrid options (SFTP, NFS), local
files, SQLAlchemy-compatible databases, or re-
mote tracking servers [36].

L16 Requires a dedicated server or additional web ser-
vice for collaboration, which complicates initial
setup and maintenance [4][40].

L17 Does not automatically reproduce data versions,
necessitating manual intervention for consistency
[36][4]. Relies on the user using other tools.

L18 Lacks in-built alerting based on monitoring for
insufficient resources [40].

L19 Does not offer role-based access or user isolation,
allowing unrestricted changes to experiments by
any user. [5][36].

L20 Lacks native collaboration features and automated
deployment tools [36].

L21 Certain advanced features or enterprise use cases
require a commercial licence [47].

Neptune
B31 Easy setup with a clear guide [47] and integrates

with tools like Google Colab, Git, and Docker [43].
B32 Complete MLOps platform: monitoring, data ver-

sioning, and testing in one solution [43].
B33 Open-source [47].
B34 Can be used for monitoring [43].

L22 Requires basic programming skills [43].

Pachyderm
B35 Provides GUI-accessible services for notebook ex-

perimentation, experiment tracking, and hyper-
parameter optimisation [23].

B36 Simple to parallelise experiments [23].

L23 Requires knowledge of, and manual configuration
for, cloud storage and Helm deployments [23].

L24 Entails a computationally heavy file system over-
head compared with Kubeflow and Polyaxon [23].

L25 Lacks "out-of-the-box" solutions.

Polyaxon
B37 Requires only basic Helm and Kubernetes opera-

tor knowledge [23].
B38 Provides a meticulous audit trail that enhances

reproducibility [23].

L26 Does not provide out-of-the-box scaling [24].
L27 Uncertain open-source vitality due to a weaker

community compared to Pachyderm and Kube-
flow [23].

TFX
B39 Automates regular retraining, evaluation, and de-

ployment [8].
B40 Supports distributed computing for large work-

loads [8].
B41 Portable and can be run on various orchestration

platforms such as Apache Airflow [8].

L28 Requires TensorFlow, which might be limiting for
non-TF use cases [20].14



1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights Literature Review, May 2025, Vrije Universiteit Amsterdam

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048

Table 6: Summary of MLOps Tools: Storage & Versioning

Tool Benefits Limitations

Dagshub
B42 Facilitates collaboration and versioning [31].
B43 Circumvents GitHub’s size limitations and in-

tegrates with DVC and MLflow [31][15].
B44 Offers a free integrated MLflow server and uni-

fied storage for data and metadata [2][15].

- -

DVC
B45 Easy to use as its DVC workflow is similar to

Git’s. This helps ease its adoption among users
familiar with Git [4].

B46 Modularises workflows into stages, ensuring
reproducibility and reducing manual errors
[4].

B47 Pipeline data can be automatically pulled from
a DagsHub repository so that the entire pro-
cess can be run using only a single command,
thus simplifying workflow execution [33].

B48 Caching for unchanged stages saves time and
minimises overhead [35].

B49 Flexible storage options (e.g., Google Drive,
HTTP, S3) without requiring a dedicated
server or GitLFServer [4].

L29 Requires manual updates for externally stored
data [4].

L30 File-level versioning can lead to extensive stor-
age use in environments with frequent file
changes and is not suited for versioning SQL
databases [4].

GTO
B50 Functions as a GitOps-based model registry,

removing the need for separate databases or
servers by leveraging Git and DVC [35].

B51 Supports promotion of models to specific
stages, facilitating deployment across desig-
nated environments [35].

B52 Seamlessly integrates with Iterative products
such as DVC and CML [35].

- -

MinIO
B53 S3-compatible storage solution optimised for

AI workloads [5].
B54 Used for storing artefacts and metadata gen-

erated by ZenML [43] and MLflow [4], and
suitable for general data.

- -

Weights & Biases
B55 Real-time experiment tracking with built-in

hardware usage monitoring [5].
B56 Free tier offers unlimited experiment runs and

100 GB of artefact storage. In addition, it in-
cludes dataset/model versioning, hyperparam-
eter optimisation, report generation, and a
model registry [5].

L31 Requires registration and a licence key for ini-
tial setup. The free plan is limited to personal
projects [5].

L32 Only the client application is open-source. The
server-side infrastructure is proprietary, limit-
ing self-hosting options [5].

L33 Demands advanced programming knowledge
for integration and usage [43][5].

Feast
B57 Manages historical and live data with of-

fline/online feature storage [44].
B58 Allows reuse of features across different ML

projects [47].
B59 Integrates with MLflow [44].
B60 Open-source [47].

L34 Requires advanced programming skills [47].
L35 Integration process is relatively complicated

[47].
15



2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186

Table 7: Summary of MLOps Tools: Inference (Model Serving)

Tool Benefits Limitations

BentoML
B61 Open-source [40] and supports multiple frame-

works (TF, PyTorch, Keras, XGBoost) [39].
B62 Features automated micro-batching for better

API performance and cloud-native deployment
[40].

L36 Provides inference-only [40] and does not offer
an automatic deployment of models, as KServe
and Seldon Core do [24][20].

KServe
B63 Automatically wraps models as web services

and is easily integrated with Kubeflow [24].
B64 Provides scalable and isolated deployments

[17] with support for HTTP/gRPC APIs [24].

- -

Seldon Core
B65 Offers pre-packaged inference servers with ro-

bust Kubernetes support [11].
B66 Supports advanced metrics tracking via

Prometheus [11].

- -

Evidently
B67 Provides model monitoring for data, target,

and prediction drifts [2][44].
B68 Predefined monitoring reports can be gener-

ated with few lines of code [2].
B69 Enables a single monitor to calculate metrics

across multiple models [24].
B70 Integrates with Prometheus and Grafana for

interactive reports, scheduled tests, and result
logging [44].

B71 Automatically logs results as artefacts in
MLflow [44].

L37 Supports tabular data only. For image or text
data, consider Alibi Detect [24].

16



2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

A Systematic Review of MLOps Tools: Tool Adoption, Lifecycle Coverage, and Critical Insights Literature Review, May 2025, Vrije Universiteit Amsterdam

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324

Table 8: Summary of MLOps Tools: Inference (Model Deployment)

Tool Benefits Limitations

Metaflow
B72 Provides a framework for creating and execut-

ing data science workflows locally and scaling
to the cloud with ease [40].

B73 Rigorous checkpoint system enables great
tracking and logging [40].

B74 Fully integrated with AWS for automatic re-
source management and native parallelisation
via AWS Batch [40].

- -

Streamlit
B75 Simple interface for deployingML applications

to the cloud [2].
B76 Convenient GitHub integration streamlines de-

ployment workflows [2].

L38 1 GB limit for public application deployments
[2].

CML
B77 Manages ML experiments and tracks modifica-

tions automatically [35].
B78 Generates comprehensive reports with essen-

tial metrics and plots [35].
B79 Reports are created and displayed directly in

pull request comments, enhancing collabora-
tion and review efficiency [35].

- -

Table 9: Summary of MLOps Tools: Infrastructure and Supporting Services

Tool Benefits Limitations

Gradio
B80 Enables creation of interactive web interfaces

for model evaluation, demonstration, and de-
ployment without HTML/CSS/JS knowledge
[15].

- -

TensorBoard
B81 Visualisation toolkit for model graphs,

weight/bias histograms, and training metrics
[47].

B82 Provides full exploration and visualisation
functionality [47].

B83 Open-source and integrates withmultiple tools
and applications [47].

L39 Requires familiarity with TensorBoard tooling
and community support for effective use [47].

17



2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

Literature Review, May 2025, Vrije Universiteit Amsterdam Zakkarija Micallef

2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462

Table 10: Summary of MLOps Tools: ML Training

Tool Benefits Limitations

Katib
B84 Optimises hyperparameters for frameworks

such as TensorFlow, MXNet, PyTorch, and XG-
Boost [17].

B85 Seamlessly integrates with Kubeflow [17].

- -

18


	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Research Goal
	3.2 Research Questions
	3.3 Pilot Study
	3.4 Initial search
	3.5 Application of Selection Criteria
	3.6 Snowballing
	3.7 Data Extraction
	3.8 Data Synthesis
	3.9 Study Replicability
	3.10 Threats to Validity

	4 Results
	4.1 RQ1: Which tools employed in MLOps workflows are most frequently reported in academic literature?
	4.2 RQ2: Which stages of the MLOps lifecycle do these tools cover in the use cases reported in the academic literature?
	4.3 RQ3: What are the reported benefits and limitations of the MLOps tools?

	5 Discussion
	5.1 RQ1 – Which tools employed in MLOps workflows are most frequently reported in academic literature?
	5.2 RQ2 – Which stages of the MLOps lifecycle do these tools cover in the reported use cases?
	5.3 RQ3 – What are the claimed benefits and limitations of the MLOps tool?

	6 Conclusion
	References

